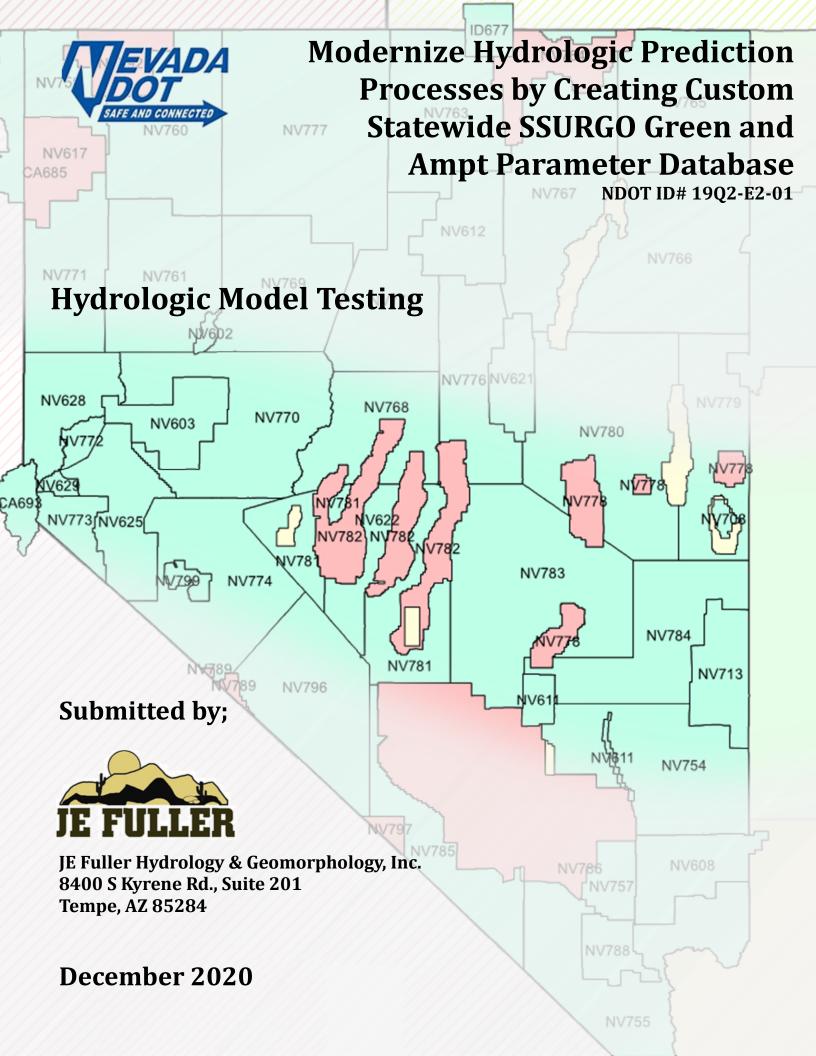
NDOT Research Report

Report No. 674-19-803

Modernize Hydrologic Prediction Processes by Creating Custom Statewide SSURGO Green and Ampt Parameter Database

Task 5: Hydrologic Model Testing


December 2020

Nevada Department of Transportation 1263 South Stewart Street Carson City, NV 89712

Disclaimer

This work was sponsored by the Nevada Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of Nevada at the time of publication. This report does not constitute a standard, specification, or regulation.

Table of Contents

		<u>Page</u>
1.	Introduction	1
2.	Original Hydrologic Study	1
3.	Green and Ampt Parameter Calculation	3
4.	USGS Regression Hydrology	5
5.	Results Comparison	6
6.	Additional Considerations	11
7.	References	11

List of Figures

Figure 1	Project Location and Vicinity	2
Figure 2	Unit Discharge vs Subbasin	9
Figure 3	Unit Discharge vs Drainage Area1	0

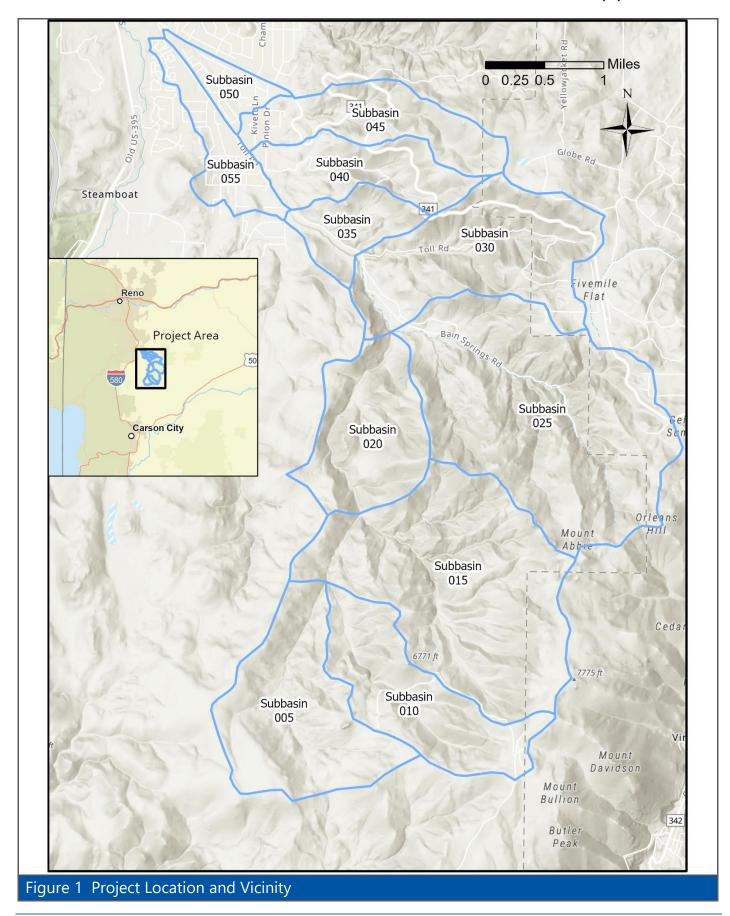
List of Tables

Table 1	Assigned Land Use with Initial Moisture and % Impervious Assumptions	3
Table 2	Subbasin Effective Imperviousness	4
Table 3	Average Initial Content Adjusted for Land Use	4
Table 4	Green and Ampt Soil Parameter Summary for Top 3 inches	5
Table 5	USGS Regression Inputs and Results	6
Table 6	HMS-Results Comparison	6
Table 7	USGS Baseline Comparison	8
Table 8	100-year Discharges Per Unit Area1	.1

List of Appendices

Appendix A. Baseline Study Documentation Appendix B. HEC-HMS Model Support Data

1. Introduction


This document is intended to function as an example of the use of soils data and methods required to implement the Green and Ampt methodology within the state of Nevada. An example hydrologic watershed model was supplied by Nevada Department of Transportation (NDOT). The hydrologic model used the Natural Resources Conservation Service (NRCS) curve number methodology for estimation of rainfall losses and utilized the United States Army Corps of Engineers (USACE) HEC-1 computer program to conduct the assessment.

For the purposes of this assessment, the original HEC-1 model was migrated to the USACE Hydrologic Modeling System (HEC-HMS) (v4.6) software platform using the HEC-1 input text contained in the technical documentation for the original hydrologic study (Kimley Horn and Associates, Inc., 2011). Simple basin area averages were used to incorporate land use and percent effective imperviousness adjustments to Green and Ampt soils parameters. All results contained in this document are based upon HEC-HMS analysis to eliminate any potential influence due to different hydrologic calculation platforms.

2. Original Hydrologic Study

The reference Bailey Canyon Hydrologic Study was completed for the Washoe County Regional Transit Commission (RTC) in 2011. The project location and vicinity are shown in **Figure 1**. The hydrologic analysis consisted of a HEC-1 model with 11 subbasins, 6 routing reaches, 1 flow diversion, and 9 concentration points (Junctions). Rainfall losses were originally calculated using the NRCS curve number methodology and utilized soil, vegetation, and land use data. Flows were developed using the unit-hydrograph methodology. The precipitation depth was specified using NOAA Atlas 14 data with a fixed areal reduction of 0.98 of the point rainfall applied to all subbasins. The precipitation hyetograph was specified in the HEC-1 model using a JR record for a balanced storm distribution. Limited GIS data was available from the original hydrologic study documentation provided.

Transfer of the original HEC-1 attributes to HEC-HMS was generally accomplished by direct transfer of attributes. The point rainfall reduction was accomplished by multiplying the NOAA Atlas 14 point precipitation values by 0.98 and entering those values into HMS for the precipitation data.

The original GIS data was not available for the study; subbasin boundaries were digitized from exhibits within the original hydrologic study. Parameters for other elements, included routing reaches, were taken directly from the HEC-1 input text which is included in **Appendix A**.

3. Green and Ampt Parameter Calculation

Calculation of Green and Ampt parameters was accomplished using NDOT Geographic Information System (GIS) data derived from NRCS soils surveys. The project watersheds fall within survey areas Nevada (NV) 628 and NV772 and data was calculated for the most restrictive layer within the top three inches of the soil column.

Calculation of detailed parameters for each of the soil column depths follows an identical process with only the input soils dataset differing. Polygons of the subbasins were intersected with NDOT soils data to determine Green and Ampt parameter regions within each subbasin. For subbasins with multiple soil map units present, XKSAT, PSIF, saturated content (Sat), and Initial Content (Wpoint/FCapac) values were averaged based upon their relative coverage (%) in each of the subbasins. Mathematically, XKSAT and PSIF were calculated based upon a logarithmic area weighted average of the soil map units while the other components are calculated via simple area weighted averaging.

Within Green and Ampt methodology, the "Percent Impervious Area" attribute is calculated through a composite of soils (natural) imperviousness and land use imperviousness. Land use attribution from the original hydrologic study was used to determine the land use composition within each subbasin. Land use codes were then cross referenced with **Table 1** to determine the approximate percent impervious area for each area and then combined using area weighted averaging of the land use in each subbasin.

Table 1 Assigned Land Use with Initial Moisture and % Impervious Assumptions							
Land Use Code	Land Use Name	Initial Moisture Condition	Land use Imperviousness [% 0-100]				
OS	Open Space	dry	0				
GR	General Rural	dry	12				
LDS	Low Density Suburban	dry	14				
MDS	Medium Density Suburban	normal	22				
MDR	Medium Density Rural	normal	6				
PR	Parks and Recreation	dry	0				
PSP	Public and Semi-Public Facilities	dry	0				
GC	GC General Commercial		85				
HDS	High Density Suburban	normal	54				

Once values for percent impervious area were determined based upon both soil and land use attributes, the two values are then added together for use within HEC-HMS; values for soil and land use based imperviousness are shown in **Table 2**.

Table 2 Subbasin Effective Imperviousness							
Subbasin	Weighted Soils (Natural) Imperviousness [% 0-100]	Weighted Land Use Imperviousness [% 0-100]	¹ Weighted Effective Imperviousness [% 0-100]				
005	0	0.00	0.00				
010	0	0.00	0.00				
015	0	0.00	0.00				
020	0	0.02	0.02				
025	0	1.39	1.39				
030	0	4.31	4.31				
035	0	6.01	6.01				
040	0	12.11	12.11				
045	0	10.66	10.66				
050	0	22.10	22.10				
055	3	19.73	22.73				

Note 1: Weighted Effective Imperviousness is the sum of Weighted Soils (Natural) Imperviousness and Weighted Land use Imperviousness for each subbasin.

Initial soil moisture content within each subbasin is assigned based upon the soil parameters present and land use. For agricultural land uses, saturated initial conditions are assumed. For irrigated landscapes such as lawns, a normal condition saturation content, specified as the soil field capacity is assumed, and for natural or non-irrigated landscapes, a dry condition, as represented by the wilting point, is utilized. Average initial soil moisture values for use within HEC-HMS were calculated based upon the percent of each watershed represented by each moisture condition (saturated, irrigated, or dry) and are calculated via simple area weighted average based upon the soil and land use composite data from the original hydrologic study. Land use initial moisture assumptions and average initial content for each subbasin are shown in **Table 3**.

Table 3 Average Initial Content Adjusted for Land Use								
Subbasin	% Normal Saturation''	% Dry Saturation''	Field Capacity	Wilting Point	Initial Content			
005	0.0	100.0	0.237	0.121	0.121			
010	0.0	100.0	0.231	0.114	0.114			
015	0.0	100.0	0.232	0.115	0.115			
020	0.0	100.0	0.231	0.114	0.114			
025	0.0	100.0	0.235	0.117	0.117			
030	0.0	100.0	0.235	0.116	0.116			
035	3.6	96.4	0.225	0.112	0.116			
040	17.5	82.5	0.226	0.112	0.132			
045	14.6	85.4	0.227	0.113	0.130			
050	69.2	30.8	0.153	0.075	0.129			
055	71.8	28.2	0.197	0.105	0.171			

Green and Ampt parameters adjusted for land use initial content and percent imperviousness are summarized (for the top 3" soil horizon dataset) in **Table 4**.

040

045

050

055

12.11

10.66

22.10

22.73

Modernize hydrologic prediction processes by creating custom statewide SSURGO Green and Ampt parameter database

0.2941

0.2875

0.7199

0.3703

Table 4	Table 4 Green and Ampt Soil Parameter Summary for Top 3 inches									
Subbasin	Initial Content WPOINT or FCAPAC [IN]	Saturation SAT [IN]	Suction PSIF [IN]	Conductivity XKSAT [IN/HR]	Effective Imperviousness [% 0-100]					
005	0.121	0.434	7.628	0.2516	0.00					
010	0.114	0.438	7.022	0.2763	0.00					
015	0.115	0.437	7.172	0.2717	0.00					
020	0.114	0.437	7.107	0.276	0.02					
025	0.117	0.437	7.644	0.2578	1.39					
030	0.116	0.437	7.622	0.2625	4.31					
035	0.116	0.437	5.599	0.2942	6.01					

5.315

5.833

0.842

2.963

Results for the Green and Ampt infiltration method are presented in **Section 5** of this document.

0.437

0.437

0.426

0.429

4. USGS Regression Hydrology

0.132

0.130

0.129

0.171

The United State Geological Survey (USGS) has developed a series of regression equations for the state of Nevada to assist in calculating peak discharges for rural watersheds (United States Geological Survey, 1999). Within Nevada, the USGS has identified six hydrologic regions, five of which are defined by spatial extents and the sixth, defined as Region 1, which is defined by an elevation/latitude curve. All subbasins for the project area are located in spatial Region 5 and are located below the threshold for inclusion in Region 1.

Within Region 5, peak discharge estimates are calculated based upon three input variables – subbasin drainage area, mean basin elevation, and site latitude. For the project subbasins, mean basin elevation was determined by geographically intersecting subbasin boundaries with USGS 3dep digital elevation model (DEM) data to determine the average basin elevation. Site latitude was sampled at the subbasin centroids. Based upon the published range of explanatory variables in USGS Fact Sheet 13-98, the project subbasins are below the range of values used in developing the equations for drainage area and, for subbasins 025, 035, 040, 045, 050, and 055, mean basin elevation; however there is no explicit indication that the equations are ill-suited for use on watersheds like those considered in this document and the results appear to be reasonable. Calculation results are shown in **Table 5**.

Table 5 l	Table 5 USGS Regression Inputs and Results									
Basin Name/ID	Assigned Geographic	Recommended Region	Area	ELEV	LAT	Peak Flow 100-year				
	Region		(sq. mi.)	ft, NAVD88	deg	(cfs)				
005	5	5	1.67	6237.04	39.31399	341.5				
010	5	5	1.31	6594.07	39.31616	250.1				
015	5	5	3.00	6530.34	39.32954	491.2				
020	5	5	1.19	6308.57	39.34852	258.3				
025	5	5	3.38	5675.18	39.35073	737.9				
030	5	5	1.74	5810.45	39.37014	420.8				
035	5	5	0.52	5140.70	39.37367	213.0				
040	5	5	0.82	5371.91	39.38046	278.2				
045	5	5	0.94	5514.25	39.38629	293.1				
050	5	5	0.29	4665.88	39.39113	168.0				
055	5	5	0.54	4730.49	39.38337	265.9				

5. Results Comparison

Individual HEC-HMS models were developed for each of the below cases

- 1. Curve Numbers (original hydrologic study)
- 2. Green and Ampt (Top 3" Horizons)

Additionally, subbasin-level hydrologic parameters were calculated based upon USGS regional regression equations. USGS regression-based data was not routed within HMS as regression methods are intended for a reasonableness comparison of the infiltration methods. Results for the 4 hydrologic methods are shown in **Table 6**. These results indicate that use of the top 6" Horizons data with the Green and Ampt methodology results in conditions which are universally more conservative than for the top 3" horizons usage. Additionally, results for the top 3" horizons with Green and Ampt infiltration result in discharges that are generally greater than the applied curve number hydrology, but of the same magnitude.

Table 6 HMS	Table 6 HMS-Results Comparison							
HEC-HMS		1	100-year Pe	eak Flows				
ID		ine (Curve		(Top 3''				
	Ni	umber)	Hor	izons)	USGS 1	Regression		
	Value	% Baseline	Value	%	Value	%		
	(cfs)		(cfs)	Baseline	(cfs)	Baseline		
CP010	630	100.0%	694	110.1%	-	-		
CP015	1,181	100.0%	1,471	124.6%	-	-		
CP025	1,896	100.0%	2,506	132.2%	-	-		
CP030	2,221	100.0%	2,881	129.8%	-	-		
CP035	2,274	100.0%	2,913	128.1%	-	-		
CP040	2,042	100.0%	2,448	119.9%	-	-		
CP045	2,178	100.0%	2,557	117.4%	-	-		
CP050	2,201	100.0%	2,567	116.6%	-	-		

Table 6 HMS-Results Comparison						
HEC-HMS	100-year Peak Flows					
ID	Baseline (Curve			G&A (Top 3''		
		umber)		izons)	USGS	Regression
	Value	% Baseline	Value	%	Value	%
	(cfs)		(cfs)	Baseline	(cfs)	Baseline
CP055	373	100.0%	568	152.1%	-	-
CP055B	2,574	100.0%	3,132	121.7%	-	-
D040	1,944	100.0%	2,375	122.2%	-	-
D055	332	100.0%	538	162.0%	-	-
R015	630	100.0%	694	110.2%	-	-
R025	1,180	100.0%	1,469	124.6%	-	-
R030	1,897	100.0%	2,504	132.0%	-	-
R035	2,221	100.0%	2,880	129.7%	-	-
R040	1,943	100.0%	2,374	122.2%	-	-
R045	2,042	100.0%	2,451	120.0%	-	-
R050	2,179	100.0%	2,557	117.3%	-	-
005	433	100.0%	389	89.8%	341.5	78.9%
010	198	100.0%	305	154.6%	250.1	126.6%
015	580	100.0%	816	140.6%	491.2	84.7%
020	222	100.0%	309	139.1%	258.3	116.1%
025	511	100.0%	754	147.6%	737.9	144.5%
030	511	100.0%	589	115.2%	420.8	82.3%
035	284	100.0%	297	104.4%	213	75.0%
040	401	100.0%	414	103.2%	278.2	69.4%
045	404	100.0%	399	98.7%	293.1	72.5%
050	159	100.0%	182	114.9%	168	106.0%
055	243	100.0%	343	141.2%	265.9	109.6%

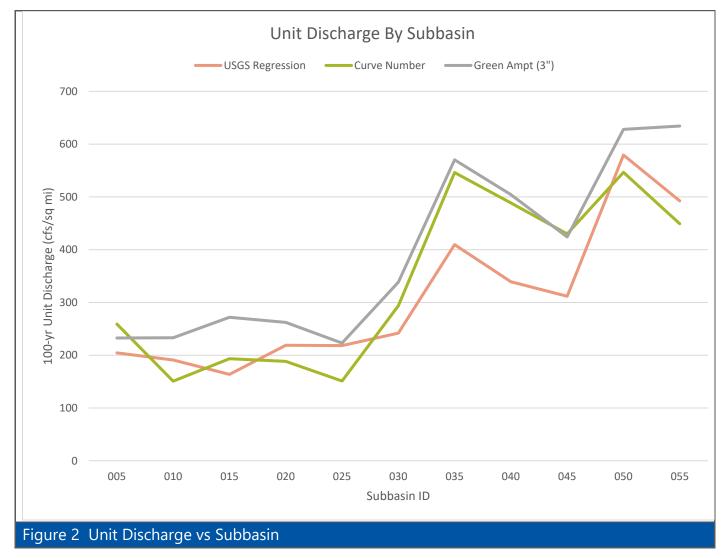

Table 6 shows a comparison of discharges for the curve number and top 3" horizons approaches with USGS regression estimates as the comparative baseline. While flows are generally comparable between the USGS regression and Green and Ampt values, Subbasin 015 exhibits the highest relative discharge difference at 55.9% greater than the USGS regression estimate for the same watershed. The infiltration parameters for Subbasin 015 due not indicate any substantial difference in Green and Ampt attributes that would explain the larger value; however, Subbasin 015 possesses the lowest discharge per unit area of any of the USGS regression results, as shown in **Table 7** and **Figure 2**.

Table 7 USGS Baseline Comparison									
HEC-HMS		100-year Peak Flows							
ID	USGS Re	gression	Curve I	Number	G&A (To	p 3'' Horizon)			
	(Base	line)							
	Value	%	Value	%	Value	% Baseline			
	(cfs)	Baseline	(cfs)	Baseline	(cfs)				
005	341.5	100.0%	433	126.7%	389	113.8%			
010	250.1	100.0%	198	79.0%	305	122.1%			
015	491.2	100.0%	580	118.1%	816	166.1%			
020	258.3	100.0%	222	86.1%	309	119.8%			
025	737.9	100.0%	511	69.2%	754	102.2%			
030	420.8	100.0%	511	121.5%	589	140.0%			
035	213	100.0%	284	133.3%	297	139.2%			
040	278.2	100.0%	401	144.0%	414	148.6%			
045	293.1	100.0%	404	137.9%	399	136.0%			
050	168	100.0%	159	94.3%	182	108.4%			
055	265.9	100.0%	243	91.2%	343	128.8%			

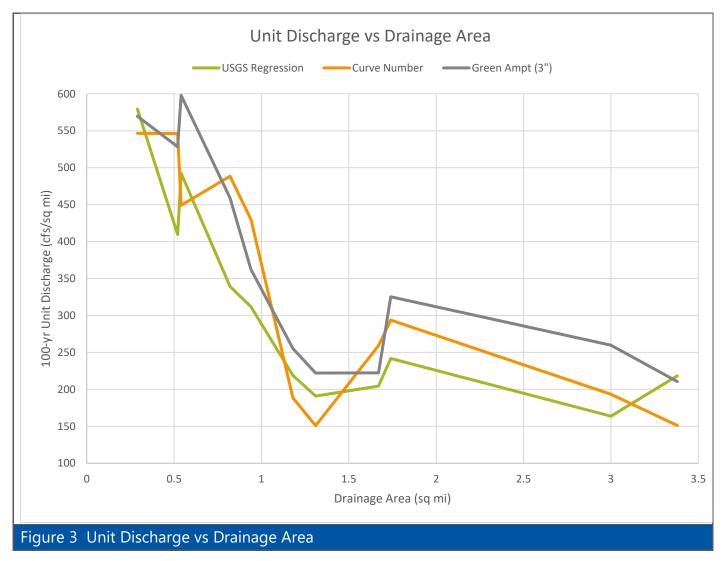

Based upon these unit discharge values, the unit discharge for Subbasin 015 is within a normal range for the Green and Ampt calculations and the relative increase over the USGS regression discharge is due in part to the low USGS regression unit discharge for that subbasin.

Figure 3 illustrates the unit discharge relationships versus drainage area for all of the subbasins within the project area; USGS is generally exhibits the lowest unit discharge of the three methods evaluated.

Also, of note is that the original curve number analysis did not separately include subbasin imperviousness, which HEC-HMS supports for curve number infiltration, although land use was utilized in determination of the curve numbers. Imperviousness values shown in **Table 1** correlate well to high unit discharges shown in **Table 8** for the Green and Ampt methodology.

An additional difference between the original curve number methodology and the applied Green and Ampt methodology is the inclusion of a vegetation cover adjustment. Curve number methodology allows for adjustment of the applied curve number based upon both the "type" and "quality" of vegetation present. While some agencies incorporate a vegetative cover adjustment with Green and Ampt infiltration (Flood Control District of Maricopa County, 2018), which would act to decrease runoff, no vegetative cover adjustment has been incorporated in this analysis.

Table 8 100-year Discharges Per Unit Area							
HEC-HMS	Subbasin	100-yr U	100-yr Unit Discharges (cfs/sq mi)				
ID	Area (sq mi)	USGS Regression	Curve	G&A (Top 3''			
		(Baseline)	Number	Horizons)			
005	1.67	204	259	233			
010	1.31	191	151	233			
015	3	164	193	272			
020	1.18	219	188	262			
025	3.38	218	151	223			
030	1.74	242	294	339			
035	0.52	410	546	570			
040	0.82	339	489	504			
045	0.94	312	430	424			
050	0.29	579	547	628			
055	0.54	492	449	634			

6. Additional Considerations

Attempts have been made in this document to provide an "apples to apples" comparison of Green and Ampt methodology with NRCS Curve Number methodology. However, there are additional considerations for a detailed synthetic hydrologic analysis that should be noted.

As discussed previously, vegetative cover effects are embedded within the curve number analysis but are not considered in the included Green and Ampt analyses. Beyond vegetative cover, no consideration has been included in either Green and Ampt or Curve Number analyses to account for initial abstraction in the form of surface storage loss. Surface storage loss is typically implemented within HEC-HMS using the "Surface" component of a subbasin object and allows an initial and maximum surface storage depth to be included in the analysis. Additional information and guidance regarding "surface storage" and selection of appropriate initial abstraction values may be found in the ADOT Hydrology Manual (Arizona Department of Transportation, 2014).

7. References

Arizona Department of Transportation, 2014, Highway Drainage Design Manual Hydrology, prepared by JE Fuller Hydrology and Geomorphology, Inc.

Flood Control District of Maricopa County, 2018, Drainage Design Manual for Maricopa County, Hydrology.

Kimley Horn and Associates, Inc., 2011. Geiger Grade Road Realignment Project. Washoe County Regional Transportation Commission.

Mohave County Flood Control District, May 2018. Drainage Design Manual for Mohave County, 3rd Edition.

United States Geological Survey, 1999. The National Flood-Frequency Program -- Methods for Estimating Flood Magnitude and Frequency in Rural Areas in Nevada. US Department of the Interior, US Geological Survey.

Appendix A. Baseline Study Documentation

FINAL TECHNICAL MEMORANDUM

GEIGER GRADE ROAD REALIGNMENT PROJECT

TO: JULIE MASTERPOOL, RTC JEFF LERUD, NDOT | JOSELIO RAMIREZ, NDOT KIMBLE CORBRIDGE, WASHOE COUNTY | WALT WEST, WASHOE COUNTY JOE COUDRIET, CITY OF RENO | BILL GALL, CITY OF RENO

FROM: LAURIE MARIN, KHA | RANDY CARROLL, KHA | TONY DOUCETTE, KHA

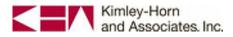
DATE: NOVEMBER 29, 2011

RE: BAILEY CANYON CREEK HYDROLOGIC ANALYSIS

INTRODUCTION:

The Regional Transportation Commission of Washoe County contracted with Kimley-Horn and Associates, Inc. to provide engineering services for the design of the Geiger Grade Realignment Project. Geiger Grade Road is located in Washoe County, Nevada, near the southern limits of the City of Reno. Also known as State Route 341, Geiger Grade Road connects State Route 430 (US 395) and Virginia City. Location and Vicinity Maps are provided in **Figure 1** and **Figure 2**. The Geiger Grade Realignment Project includes the final design and preparation of construction documents for the realignment of Geiger Grade Road in a westerly direction at its intersection with Toll Road/Equestrian Road to a new intersection with State Route 430 (US 395). The realignment will include a new bridge structure across Steamboat Creek, a roundabout at the intersection of the realigned Geiger Grade Road and State Route 430 (US 395), and modification of the signalized intersection of Geiger Grade Road with Toll Road to a two-lane roundabout. Improvements to the intersection of Geiger Grade Road with Toll Road/Equestrian Road to a two-lane roundabout. Improvements to the intersection of Geiger Grade Road with Toll Road/Equestrian Road include rainfall runoff conveyance facilities to accommodate Bailey Canyon Creek through the project, upstream of its confluence with Steamboat Creek.

PURPOSE:


The purpose of this technical memorandum is to document the methodology and results for the hydrologic analysis of Bailey Canyon Creek as part of the Geiger Grade Road Realignment Project. This technical memorandum will provide the hydrologic basis for the flow rate to be used for the design of rainfall runoff conveyance structures at the two proposed crossings of Geiger Grade Road over Bailey Canyon Creek near the Geiger Grade Road and Toll Road intersection.

BACKGROUND:

Bailey Canyon Creek is a tributary to Steamboat Creek with a contributing watershed of approximately 15 square miles. The watershed begins in the Virginia Range east of the Steamboat Valley and joins Steamboat Creek south of the existing intersection of Geiger Grade Road (SR 341), Mt. Rose Highway (SR 431) and Virginia Street (US 395/SR 430). Steamboat Creek joins the Truckee River at a confluence east of Reno and Sparks, Nevada.

The existing Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) for Bailey Canyon Creek is dated 2009 and provides a 100-year effective flow rate of 1,120 cubic feet per second (cfs). Several hydrologic

investigations have been completed for Bailey Canyon Creek over the past 15 years. The studies report 100-year flow rates for Bailey Canyon Creek ranging between 2,000 and 3,700 cfs. Previous hydrology models used various methodologies and assumptions. Given the wide range of flow rates and varying development assumptions, Washoe County and City of Reno recommended that Kimley-Horn conduct an independent hydrologic analysis based on existing conditions and current Washoe County methodology. The outcome of the hydrologic model will be a design flow rate for the two proposed crossings of Bailey Canyon Creek.

HYDROLOGIC PARAMETER DEVELOPMENT:

The procedures and methodology discussed in this technical memorandum primarily reference the *Truckee Meadows Regional Drainage Manual (TMRDM)*, dated April 30, 2009.

FIELD INVESTIGATIONS:

Kimley-Horn conducted a field investigation of the Bailey Canyon Creek Watershed on September 12-13, 2011. The purpose of the field investigation was to observe existing soil conditions, vegetation, land use, and creek roughness in the upper, undeveloped watershed. Observations were used to determine runoff parameters for contributing subbasins and routing reaches of Bailey Canyon Creek. Additionally, Kimley-Horn staff followed Bailey Canyon Creek through the developed portion of the downstream watershed and observed and measured existing drainage features and flow-split locations to aid in subbasin delineations. Photographs of selected locations are provided in Attachment 1.

DRAINAGE AREAS:

The Bailey Canyon Creek watershed was delineated using the "USA Topographic Maps" online GIS server available from ArcGIS at <u>http://goto.arcgisonline.com/maps/USA_Topo_Maps</u> and available 2-ft topographic contour data from Washoe County. The "USA Topographic Maps" server consists of land cover imagery and detailed topographic maps for the United States. The map includes seamless, scanned images of United States Geological Survey (USGS) paper topographic maps at 1:100,000 and 1:24,000 scales. The Bailey Canyon Creek watershed is contained within the following 7.5 minute USGS Quadrangle Sheets:

- Steamboat, NV (dated 1994)
- Virginia City, NV (dated 1994)

Supplemental 2-ft contour data from Washoe County was provided for the following sections (with dates in parenthesis):

- Township 17 North, Range 20 East Section 3 (2007)
- Township 18 North, Range 20 East Sections 27 (2006), 28, 33, and 34 (2007)

Subbasin boundaries, flowpaths and routing reaches are provided in Figure 3. A summary of the contributing subbasin areas is provided in Table 1.

T	5
Subbasin	Subbasin Area
	[mi ²]
005	1.67
010	1.31
015	3.00
020	1.18
025	3.38
030	1.74
035	0.52
040	0.82
045	0.94
050	0.29
055	0.54
Total	15.39

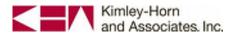
PRECIPITATION:

National Oceanic and Atmospheric Administration Atlas 14 (NOAA Atlas 14) point precipitation frequency estimates for the centroid of the Bailey Canyon Creek watershed are provided in Attachment 2. The tabular report provides estimates with 90% confidence intervals for durations ranging from 5-minutes to 60-days across recurrence intervals from 1-year to 1,000 years. This technical memorandum evaluates the 100-year, 24-hour storm event.

UNIT HYDROGRAPH:

The Soil Conservation Service (SCS) Unit Hydrograph method was used for Bailey Canyon Creek. The SCS Unit Hydrograph methodology is dimensionless and computes rainfall excess hydrographs for a unit amount of rainfall applied uniformly over a subbasin for a unit duration. The rainfall excess hydrographs are transformed to a subbasin hydrograph by superimposing the excess hydrographs lagged by the unit duration. The shape of the SCS Unit Hydrograph is curvilinear and based on the time-to-peak (T_p) and the point of inflection of the falling leg of the unit hydrograph.

Input data for the SCS Unit Hydrograph consists of the single parameter TLAG, defined as the lag time in hours between the center of mass of rainfall excess and the peak of the unit hydrograph. Calculation of TLAG depends on the size of the drainage basin. For small drainage basins with a contributing area of less than one square mile, and basin slopes less than ten percent, the lag time is controlled by initial overland flow time and related to the time of concentration (t_c). For drainage basins greater than one square mile and with basin slopes equal to or greater than ten percent, the lag time of concentration is generally governed by the concentrated flow travel time rather than initial overland flow time. The lag time for larger, steeper basins can be computed as follows:


TLAG=22.1K_n
$$\left(\frac{LL_{c}}{S^{0.5}}\right)^{0.33}$$

Where K_n = Roughness factor for the basin channels (from Table 703 of the City of Sparks HCDDM) L = Length of longest watercourse (miles)

 L_c = Length along longest watercourse measured upstream to a point opposite the centroid of the basin (miles)

S = Representative (average) slope of the longest watercourse (feet per mile)

The representative slope of the longest watercourse was computed by the Mean Basin Slope (S) methodology from the City of Tucson *Standards Manual for Drainage Design and Floodplain Management* as follows:

$$S = \left(\frac{L_c}{G}\right)^2$$

Where S = mean basin slope (feet per foot) L_c = Length of hydraulically longest watercourse (ft) $G = \left(\frac{\Delta L_1^3}{\Delta H_1}\right)^{1/2} + \left(\frac{\Delta L_2^3}{\Delta H_2}\right)^{1/2} + \left(\frac{\Delta L_3^3}{\Delta H_3}\right)^{1/2} + \left(\frac{\Delta L_4^3}{\Delta H_4}\right)^{1/2}$ $\Delta L = Change in length factor (ft)$ $\Delta H = Change in elevation factor (ft)$

The City of Tucson mean basin slope methodology is appropriate for mountainous watersheds because of the varying slopes within the watershed (steep and mountainous in the upper portions compared to the flatter valleys) and has been previously approved for hydrology studies in Nevada.

TLAG calculations for Bailey Canyon Creek are provided in Attachment 3, and a summary of the TLAG results is provided in Table 2.

Subbasin	K _n	L	L _c	S	TLAG
	[]	[mi]	[mi]	[ft/mi]	[hrs]
005	0.12	2.64	1.22	329	1.50
010	0.12	2.78	1.42	617	1.45
015	0.12	2.64	0.98	693	1.24
020	0.12	2.36	0.89	360	1.28
025	0.12	2.99	1.66	615	1.56
030	0.10	2.29	1.03	603	1.02
035	0.08	1.41	0.50	395	0.59
040	0.07	2.36	1.09	620	0.73
045	0.07	2.71	1.44	510	0.87
050	0.05	1.25	0.74	81	0.52
055	0.05	1.89	1.02	133	0.61

Table 2. TLAG Summary Table

RAINFALL LOSSES:

Rainfall losses were computed using the SCS Curve Number methodology. The curve number methodology relates soil cover, land use, vegetation and antecedent moisture conditions to a runoff curve number used to quantify excess runoff in response to precipitation.

Determinations of the hydrologic soil group and land use parameters for curve number calculations are discussed in the "Soils" and "Land Use" sections of this technical memorandum, and the antecedent moisture condition for the Washoe County area is AMC-II. With these parameters, curve numbers were assigned to the Bailey Canyon Creek subbasin areas from Table 702 of the *TMRDM*. Because of the large subbasin sizes, multiple hydrologic soil groups, land uses and vegetative cover conditions occur in some basins. As a result, a composite curve number was computed for each subbasin that provides an area weighted average. Composite curve number calculations are provided in Attachment 4, and a summary is provided in Table 3.

Subbasin	Composite CN
005	80
010	69
015	71
020	71
025	70
030	76
035	81
040	82
045	82
050	79
055	77

Table 3. Composite Curve Number Summary Table

Soils:

The SCS (now the Natural Resources Conservation Service, or NRCS) established a soil classification system for soil survey maps across the United States that provides the hydrologic soil groups (A, B, C or D). The soil survey areas used for Bailey Canyon Creek include:

- NV 628 for Washoe County, Nevada, South Part, dated 11/2/2009
- NV 772 for Storey County Area, Nevada, dated 11/9/2009

A map of the soil groups within the Bailey Canyon Creek watershed is provided in Figure 4, and a summary table of soil group areas by subbasins is provided in Attachment 5.

LAND USE:

Washoe County provided land use shape files for the *South Valleys Area Plan* (September, 2010) and *Southeast Truckee Meadows Area Plan* (July, 2011) components of the Washoe County Master Plan. Land use data is typically based on zoning, general planning information and existing topography. Areas within the Bailey Canyon Creek watershed that did not have a land use assigned from the Master Plan were designated as open space and verified with recent aerial mapping. A land use map is provided in Figure 5, and a summary of land use codes and reference maps are provided in Attachment 6.

CHANNEL ROUTING:

The Muskingum-Cunge routing methodology was used to route subbasin hydrographs. The channel routing technique accounts for hydrograph diffusion based on the physical channel properties and the inflowing hydrograph. Muskingum-Cunge can be used for channels with standard prismatic shapes or with irregular cross sections. Data inputs consist of a representative channel cross section, routing reach length, Manning's roughness coefficients, and channel bed slope. Routing reaches are illustrated in Figure 3, and input parameters are provided in Attachment 7 and summarized in Table 4.

Routing Reach	Length [ft]	Upstream Elevation [ft]	Downstream Elevation [ft]	Slope [ft/ft]	Manning's n	Bottom Width [ft]	Side Slopes [XX:1]
R015	3,529	5720	5560	0.045	0.073	100	2
R025	9,817	5560	5120	0.045	0.078	50	2
R030	4,069	5120	4960	0.039	0.100	25	3
R035	3,714	4960	4834	0.034	0.108	70	4
R040	3,539	4834	4730	0.029	0.073	30	50
R045	1,734	4730	4690	0.023	0.086	30	50
R050	5,748	4690	4588	0.018	0.053	20	2
R055	9,490	4834	4588	0.026	0.045	8	10

Table 4 Mucking	num Cunao Do	uting Input D	ata Summary Tabl	
Table 4. Musking	јинт-синуе кс	uting input D	ata Summary Tabl	ie.

FLOW SPLITS:

Bailey Canyon Creek Crosses Toll Road southwest of the intersection of Toll Road with Ravazza Road in two 8-ft by 5-ft concrete box culverts. During high flow events when flow depths exceed the existing roadway elevation, flow is divided at this crossing. A portion of the runoff crosses under Toll Road in the box culverts, and the remainder overtops the road. The majority of the flow that overtops the road continues in Bailey Canyon Creek, however, some does split from the channel and flow down Toll Road. The capacity of the box culverts was evaluated using the Federal Highway Administration (FHWA) HY-8 version 7.2 culvert modeling software and used to create a rating curve for the crossing. Supporting documentation for the flow split is provided in Attachment 8.

A second flow split location was evaluated at Geiger Grade Road between Western Skies Drive and High Chaparral Way where Bailey Canyon Creek flows adjacent to Geiger Grade Road. Normal depth analysis shows that a breakout does not occur unless the flow rate exceeds 3,288 cfs. The 100-year, 24-hour runoff calculated in that area is 2,179 cfs. Supporting Flowmaster cross sections and input data are included in Attachment 8.

HYDROLOGIC MODEL:

The United States Army Corps of Engineers (USACE) Hydrologic Engineering Center HEC-1 Flood Hydrograph Package was used to calculate runoff for the Bailey Canyon Creek Watershed using the parameters discussed in this technical memorandum. HEC-1 output results are included in Attachment 9.

RESULTS:

Bailey Canyon Creek crosses the proposed Geiger Grade Road Realignment in two locations: first under the Toll Road approach south of the proposed roundabout, and again under Geiger Grade Road west of the proposed roundabout. The two crossings are illustrated in Attachment 10. Due to the flow split upstream where Bailey Canyon Creek crosses Toll Road near the intersection of Toll Road and Ravazza road, the design flow rates for each crossing are different. The first crossing under Toll Road includes flow that continued in Bailey Canyon Creek from the flow split and is represented in the hydrologic model by CP050. The second crossing under Geiger Grade Road includes both the flow from Bailey Canyon Creek, and the flow that splits to Toll Road and continues along Toll Road to the intersection. The second crossing is represented in the hydrologic model by CP055. The split flow routed along Toll Road (represented by R055) flows along the road and in the ditches on both sides of the road. Since the ditch on the east side of Toll Road crosses under the first crossing, approximately half of the split flow routed along Toll Road is added to the first crossing. A summary of the design flow rates is provided in Table 5.

	Crossing 1 Under	Crossing 2 Under						
HEC-1 ID	Toll Road	Geiger Grade Road						
CP050	2,179	-						
1/2 of R055	161	-						
CP055	-	2,541						
Design Flow Rate	2,340	2,541						

Table 5. Design Flow Rates Summary Table

REFERENCES:

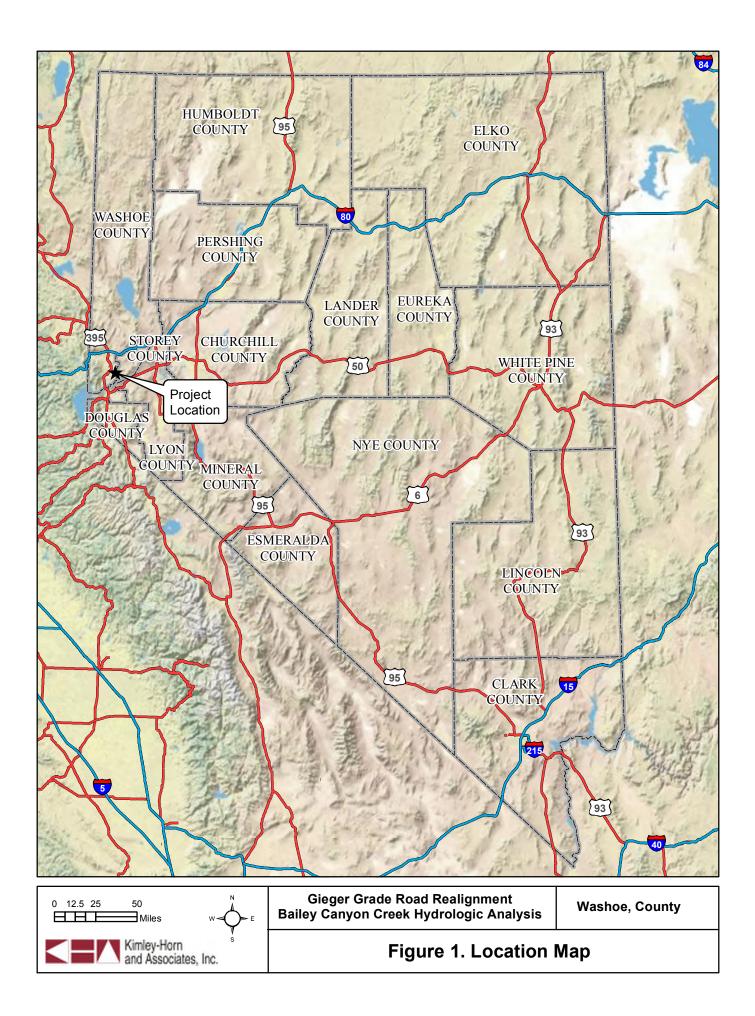
- 1. ArcGIS Online servers. <u>http://goto.arcgisonline.com/maps/USA_Topo_Maps</u>. 2011.
- 2. City of Sparks. "Hydrologic Criteria and Drainage Design Manual". June 30, 1998.
- 3. City of Tucson. "Standards Manual for Drainage Design and Floodplain Management". July, 1998.
- 4. United States Army Corps of Engineers Hydrologic Engineering Center. "HEC-1 Flood Hydrograph Package User's Manual". June, 1998.
- 5. Washoe County Department of Community Development. "South Valleys Area Plan" September, 2010.
- 6. Washoe County Department of Community Development. "Southeast Truckee Meadows Area Plan". July, 2011
- 7. Washoe County Department of Community Development. "Washoe County Master Plan Land use and Transportation Element". September, 2010.
- 8. Washoe County Department of Public Works. "Truckee Meadows Regional Drainage Manual". April 30, 2009.

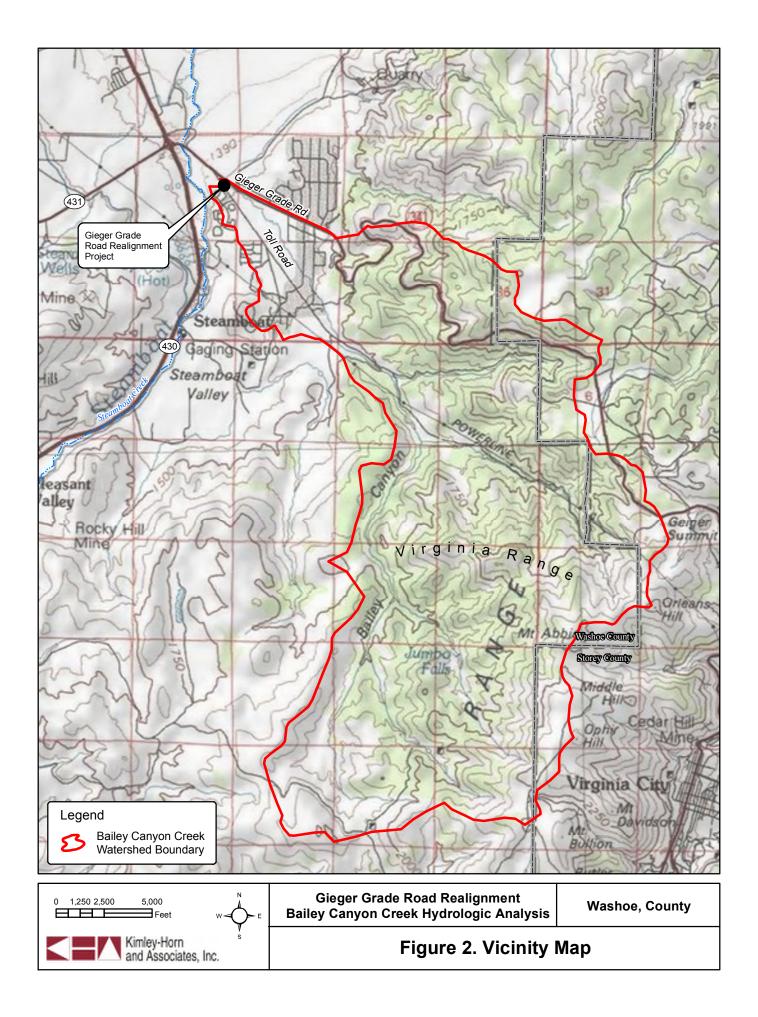
FIGURES:

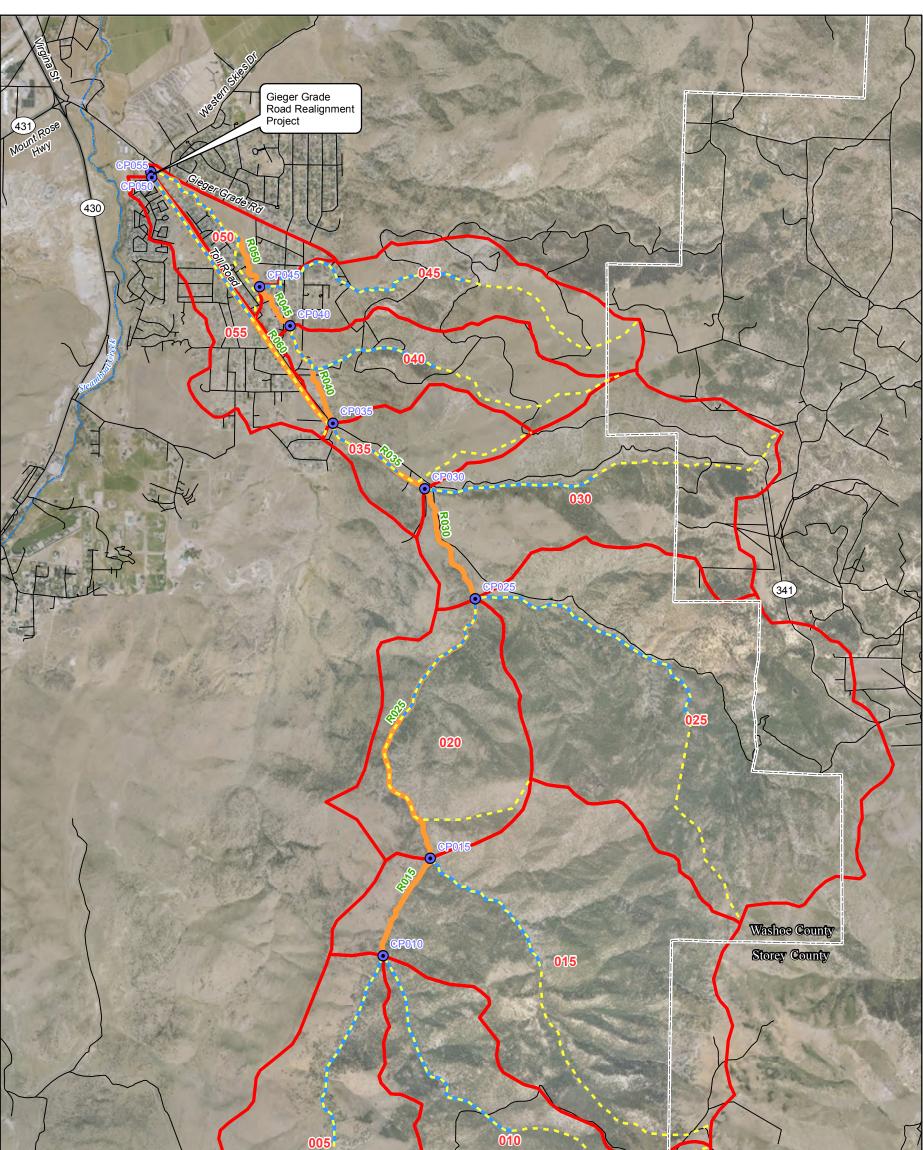
- 1. Location Map
- 2. Vicinity Map
- 3. Hydrology Map
- 4. Soils Map
- 5. Land Use Map

ATTACHMENTS:

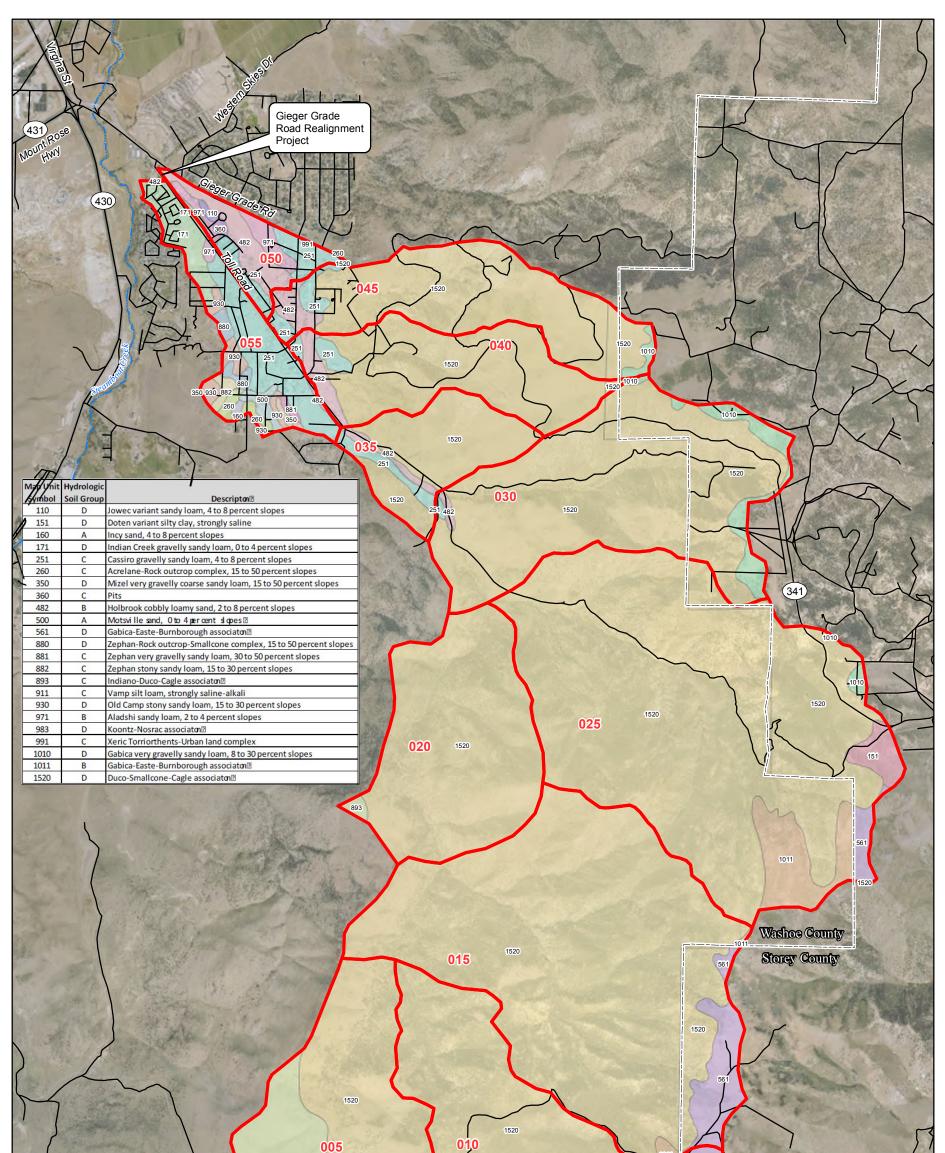
- 1. Field Photographs
- 2. NOAA Atlas 14 Rainfall
- 3. TLAG Calculations
- 4. Composite Curve Number Calculations
- 5. Soil Parameters
- 6. Land Use Parameters
- 7. Muskingum-Cunge Channel Routing
- 8. Flow Split Calculations
- 9. HEC-1 Model Output
- 10. Geiger Grade Road Realignment Exhibit

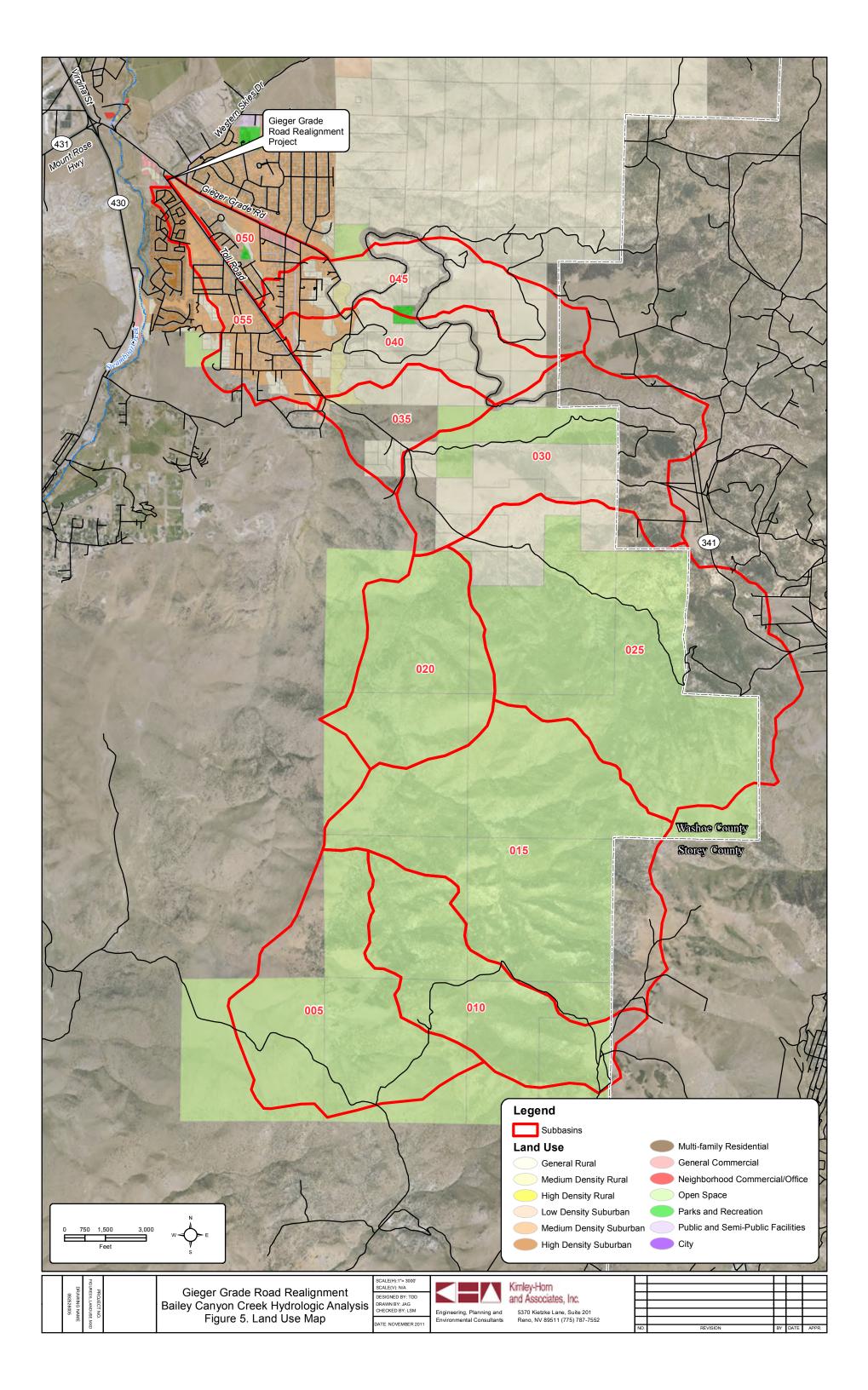


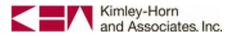



FIGURES:

- 1. Location Map
- 2. Vicinity Map
- 3. Hydrology Map
- 4. Soils Map
- 5. Land Use Map

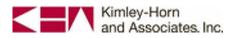






0 750 1,500 3,000 Feet						Legend © Concentration Points - Tc Flowpaths - LCA Routing Reach C Subbasins
PROJECT NO. FGLIREDJ HYDROLOGY MWD DR AWNIG NAME 092528005	Gieger Grade Road Realignment Bailey Canyon Creek Hydrologic Analysis Figure 3. Hydrology Map	SCALE(H):1*= 3000' SCALE(V): N/A DESIGNED BY: TDD DRAWN BY: JAG CHECKED BY: LSM DATE: NOVEMBER 2011	Engineering, Planning and Environmental Consultants	Kimley-Hom and Associates, Inc. 5370 Kietzke Lane, Suite 201 Reno, NV 89511 (775) 787-7552	NO.	REVISION BY DATE APPR.

		983				Legend Subbas	sins	A A A A A A A A A A A A A A A A A A A
PROJECT NO. FIGURE04_SOLID JMXD DRAWING NAME 082528005	Gieger Grade Road Realignment Bailey Canyon Creek Hydrologic Analysis Figure 4. Soils Map	SCALE(H):1"= 3000' SCALE(V): N/A DESIGNED BY: TDD DRAWN BY: JAG CHECKED BY: LSM DATE: NOVEMBER 2011	Engineering, Planning and Environmental Consultants	Kinley-Hom and Associates, Inc. 5370 Kietzke Lane, Suite 201 Reno, NV 89511 (775) 787-7552	NO. REVISIO	N B	Y DATE	APPR.



ATTACHMENTS:

- 1. Field Photographs
- 2. NOAA Atlas 14 Rainfall
- 3. TLAG Calculations
- 4. Composite Curve Number Calculations
- 5. Soil Parameters
- 6. Land Use Parameters
- Muskingum-Cunge Channel Routing
 Flow Split Calculations
- 9. HEC-1 Model Output
- 10. Geiger Grade Road Realignment Exhibit

ATTACHMENT 1: FIELD PHOTOGRAPHS

At the top of the Geiger Summit, the eastern boundary of the Bailey Canyon Creek Watershed.

Typical vegetative cover high in the Bailey Canyon Creek Watershed

Slopes and vegetative cover along Geiger Grade Road

<u>Close up view of typical vegetative cover in the higher</u> <u>elevations</u>

<u>Cover conditions of the mid-elevations of the Bailey</u> <u>Canyon Creek Watershed</u>

Low elevation cover and slopes along Geiger Grade Road

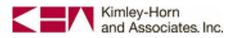
Geiger Grade Road Realignment Bailey Canyon Creek Field Photographs

Bailey Canyon Creek Hydrologic Analysis

Low elevation cover and slopes

Typical vegetation in Bailey Canyon Creek adjacent to Bain Spring Road

Bailey Canyon Creek adjacent to Toll Road and downstream of Bain Spring Road


Dual 8'x5' concrete box culverts at Bailey Canyon Creek crossing under Toll Road near Ravazza Road

<u>12'x5' concrete box culvert at Bailey Canyon Creek</u> crossing under Kivett Lane

Roadside ditch along south side of Toll Road (looking west)

ATTACHMENT 2: NOAA ATLAS 14 RAINFALL

NOAA Atlas 14, Volume 1, Version 5 Location name: Reno, Nevada, US* Coordinates: 39.3550, -119.6890 Elevation: 5641ft* * source: Google Maps POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

P	DS-based	point pre	cipitation					e interval	s (in inche	es)
Duration	Average recurrence interval(years) 1 2 5 10 25 50 100 200 500 1000									
		0.138	0.184	0.226	0.295	0.357	0.430	0.519	0.663	0.795
5-min	0.111 (0.095–0.131)				0.295 (0.242-0.350)					
10-min	0.169 (0.145–0.199)	0.210 (0.181-0.249)	0.280 (0.239-0.332)	0.344 (0.291–0.407)	0.448 (0.368-0.533)	0.543 (0.432-0.652)	0.655 (0.505-0.797)	0.790 (0.584-0.981)	1.01 (0.701–1.29)	1.21 (0.799–1.58)
15-min	0.209 (0.180-0.247)	0.261 (0.224–0.309)	0.347 (0.296-0.411)	0.426 (0.360-0.504)	0.556 (0.456-0.661)	0.673 (0.536-0.809)	0.812 (0.626-0.987)	0.979 (0.724–1.22)	1.25 (0.869–1.60)	1.50 (0.991–1.96
30-min	0.281 (0.243-0.332)	0.351 (0.302–0.416)	0.467 (0.398-0.553)	0.574 (0.485-0.679)	0.749 (0.615-0.890)	0.906 (0.722-1.09)	1.09 (0.842–1.33)	1.32 (0.975–1.64)	1.68 (1.17–2.15)	2.02 (1.33–2.64)
60-min	0.348 (0.300-0.411)	0.434 (0.374–0.515)	0.578 (0.492–0.685)	0.710 (0.601–0.840)	0.926 (0.761-1.10)	1.12 (0.893-1.35)	1.35 (1.04–1.65)	1.63 (1.21–2.03)	2.08 (1.45–2.66)	2.50 (1.65-3.27)
2-hr	0.462 (0.407-0.533)	0.575 (0.508-0.663)	0.731 (0.639–0.843)	0.865 (0.748-0.998)	1.07 (0.899–1.24)	1.25 (1.03–1.46)	1.45 (1.16–1.73)	1.71 (1.33–2.06)	2.15 (1.60-2.68)	2.57 (1.84-3.27)
3-hr	0.561 (0.498-0.636)	0.698 (0.626-0.796)	0.869 (0.770-0.989)	1.01 (0.886-1.15)	1.20 (1.04–1.38)	1.37 (1.17–1.58)	1.56 (1.30–1.83)	1.81 (1.48–2.15)	2.24 (1.78–2.72)	2.64 (2.05-3.29)
6-hr	0.808 (0.719–0.910)	1.01 (0.899-1.14)	1.24 (1.10-1.40)	1.42 (1.25–1.61)	1.66 (1.44–1.89)	1.85 (1.58–2.12)	2.03 (1.71–2.35)	2.25 (1.86-2.64)	2.58 (2.09-3.08)	2.90 (2.31-3.52)
12-hr	1.10 (0.976-1.24)	1.38 (1.23–1.56)	1.73 (1.53–1.96)	2.01 (1.76–2.28)	2.38 (2.06–2.71)	2.66 (2.28-3.06)	2.95 (2.48-3.43)	3.23 (2.68-3.81)	3.61 (2.91–4.34)	3.92 (3.09–4.78)
24-hr	1.39 (1.26–1.55)	1.75 (1.59–1.95)	2.22 (2.01–2.48)	2.61 (2.35–2.90)	3.14 (2.81–3.50)	3.57 (3.17–3.98)	4.02 (3.53–4.51)	4.48 (3.90-5.07)	5.12 (4.38-5.85)	5.64 (4.75–6.51)
2-day	1.71 (1.53–1.93)	2.16 (1.93–2.43)	2.77 (2.47-3.12)	3.27 (2.91–3.69)	3.98 (3.50-4.50)	4.55 (3.97–5.16)	5.15 (4.44–5.89)	5.79 (4.94–6.68)	6.68 (5.58–7.80)	7.40 (6.07–8.76)
3-day	1.90 (1.71–2.15)	2.41 (2.16–2.72)	3.13 (2.80-3.52)	3.71 (3.31–4.19)	4.55 (4.01–5.14)	5.22 (4.56–5.92)	5.95 (5.14–6.78)	6.72 (5.73-7.71)	7.81 (6.52–9.07)	8.71 (7.14–10.2)
4-day	2.10 (1.88–2.37)	2.67 (2.39–3.01)	3.48 (3.12-3.93)	4.16 (3.70–4.68)	5.12 (4.52–5.77)	5.90 (5.16-6.67)	6.75 (5.83-7.66)	7.65 (6.52-8.74)	8.94 (7.47-10.3)	10.0 (8.21–11.7)
7-day	2.49 (2.21–2.82)	3.17 (2.81–3.60)	4.18 (3.69–4.74)	4.99 (4.40-5.67)	6.14 (5.37–7.00)	7.07 (6.13–8.08)	8.07 (6.91–9.25)	9.12 (7.73–10.5)	10.6 (8.84–12.4)	11.8 (9.71–14.0)
10-day	2.80 (2.47–3.18)	3.58 (3.17-4.07)	4.72 (4.17–5.37)	5.62 (4.94–6.40)	6.88 (6.00-7.86)	7.88 (6.82–9.02)	8.94 (7.66–10.3)	10.0 (8.51–11.6)	11.6 (9.65–13.5)	12.8 (10.5–15.0)
20-day	3.57 (3.18–4.04)	4.56 (4.06–5.17)	5.98 (5.31–6.77)	7.08 (6.27-8.01)	8.57 (7.53–9.71)	9.72 (8.48-11.1)	10.9 (9.44–12.5)	12.1 (10.4–13.9)	13.8 (11.6–16.0)	15.1 (12.6–17.7)
30-day	4.22 (3.75–4.79)	5.41 (4.80–6.13)	7.07 (6.26-8.02)	8.36 (7.37–9.47)	10.1 (8.85–11.5)	11.4 (9.96–13.0)	12.8 (11.1–14.7)	14.2 (12.2–16.4)	16.1 (13.6–18.8)	17.6 (14.7–20.7)
45-day	5.05 (4.49–5.68)	6.48 (5.75–7.28)	8.46 (7.50–9.51)	9.95 (8.79–11.2)	11.9 (10.5–13.4)	13.4 (11.7–15.1)	14.9 (13.0–16.9)	16.4 (14.2–18.7)	18.4 (15.7–21.1)	19.9 (16.8–23.0)
60-day	5.89 (5.20–6.65)	7.59 (6.70-8.55)	9.91 (8.74–11.1)	11.6 (10.2–13.0)	13.7 (12.0–15.4)	15.3 (13.3–17.3)	16.8 (14.6–19.0)	18.3 (15.8–20.8)	20.2 (17.3–23.1)	21.6 (18.4–24.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

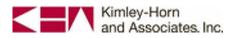
Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Large scale terrain

Large scale map


Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service Office of Hydrologic Development 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions@noaa.gov

Disclaimer

ATTACHMENT 3: TLAG CALCULATIONS

	Geiger Grade R HEC-1 Input Pa	•		r Bailey Car	nyon Creek				
Designed by Checked by	LSM	Date	9/22/2011 10/5/2011		Project No.	092528005			
Mean Basin Slo	ope (Sc):								
$S_c = \left(\cdot \right)$	$\left(\frac{L_c}{G}\right)^2$	Mean slope equation from City of Tucson Standards Manual for Drainage Design and Floodplain Management (1998)							
where	S _c =	Mean Basin	Slope (ft/ft)						
	L _c =			ongest Wa	tercourse (ft)				
$G = \left(\frac{\Delta L_1^3}{\Delta H_1}\right)^{1/2} + \left(\frac{\Delta L_2^3}{\Delta H_2}\right)^{1/2} + \left(\frac{\Delta L_3^3}{\Delta H_3}\right)^{1/2} + \left(\frac{\Delta L_4^3}{\Delta H_4}\right)^{1/2}$ $\Delta L = \qquad \text{Change in Length Factor (ft)}$ $\Delta H = \qquad \text{Change in Elevation Factor (ft)}$									
Subbasin	Segment	ΔL	USGE	DSGE	$(\Delta L^3 / \Delta H)^{1/2}$	S _c			
		[ft]	[ft]	[ft]	[ft]	[ft/mi]			
	Upper	1,396	6,725	6,600	4,665				
	оррег	•		,					
	Upper-Mid	2,427	6,600	6,320	7,145	1			
	· · ·	2,427 3,006			7,145 9,515				
	Upper-Mid		6,600	6,320	9,515 34,431				
005	Upper-Mid Lower-Mid	3,006	6,600 6,320	6,320 6,020	9,515	329			
005	Upper-Mid Lower-Mid Lower Subbasin Upper	3,006 7,085 13,914 3,406	6,600 6,320 6,020	6,320 6,020 5,720 5,720 7,160	9,515 34,431 55,757 8,400	329			
005	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid	3,006 7,085 13,914 3,406 3,764	6,600 6,320 6,020 6,725 7,720 7,160	6,320 6,020 5,720 5,720 7,160 6,360	9,515 34,431 55,757 8,400 8,165	329			
005	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower-Mid	3,006 7,085 13,914 3,406 3,764 2,329	6,600 6,320 6,020 6,725 7,720 7,160 6,360	6,320 6,020 5,720 5,720 7,160 6,360 6,080	9,515 34,431 55,757 8,400 8,165 6,717	329			
	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower-Mid Lower	3,006 7,085 13,914 3,406 3,764 2,329 5,178	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080	6,320 6,020 5,720 5,720 7,160 6,360 6,080 5,720	9,515 34,431 55,757 8,400 8,165 6,717 19,635				
005	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower Subbasin	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720	6,320 6,020 5,720 5,720 7,160 6,360 6,080 5,720 5,720	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918	329 617			
	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower Subbasin Upper	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680	6,320 6,020 5,720 5,720 7,160 6,360 6,080 5,720 5,720 5,720	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385				
	Upper-Mid Lower-Mid Subbasin Upper Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044 2,154	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680 7,480	6,320 6,020 5,720 5,720 7,160 6,360 6,080 5,720 5,720 7,480 6,800	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385 3,834				
	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower Subbasin Upper Upper-Mid Lower-Mid	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044 2,154 5,773	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680 7,480 6,800	6,320 6,020 5,720 5,720 6,360 6,360 6,080 5,720 5,720 7,480 6,800 6,000	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385 3,834 15,508				
010	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower-Mid Lower	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044 2,154 5,773 4,992	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680 7,480 6,800 6,000	6,320 6,020 5,720 5,720 7,160 6,360 6,080 5,720 5,720 5,720 7,480 6,800 6,800 6,000	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385 3,834 15,508 16,815	617			
	Upper-Mid Lower-Mid Subbasin Upper Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower-Mid Lower Subbasin	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044 2,154 5,773 4,992 13,963	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680 6,800 6,800 6,000 7,680	6,320 6,020 5,720 5,720 6,360 6,360 6,080 5,720 5,720 7,480 6,800 6,800 6,000 5,560	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385 3,834 15,508 16,815 38,542				
010	Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower Subbasin Upper Upper-Mid Lower Subbasin Upper Subbasin	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044 2,154 5,773 4,992 13,963 846	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680 7,480 6,800 6,000 7,680 6,520	6,320 6,020 5,720 5,720 7,160 6,360 6,080 5,720 5,720 5,720 7,480 6,800 6,800 6,000 5,560 5,560	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385 3,834 15,508 16,815 38,542 1,375	617			
010	Upper-Mid Lower-Mid Subbasin Upper Upper-Mid Lower-Mid Lower Subbasin Upper Upper-Mid Lower-Mid Lower Subbasin	3,006 7,085 13,914 3,406 3,764 2,329 5,178 14,677 1,044 2,154 5,773 4,992 13,963	6,600 6,320 6,020 6,725 7,720 7,160 6,360 6,080 7,720 7,680 6,800 6,800 6,000 7,680	6,320 6,020 5,720 5,720 6,360 6,360 6,080 5,720 5,720 7,480 6,800 6,800 6,000 5,560	9,515 34,431 55,757 8,400 8,165 6,717 19,635 42,918 2,385 3,834 15,508 16,815 38,542	617			

020

025

Lower-Mid

Lower

Subbasin

Upper

Upper-Mid

Lower-Mid

Lower

Subbasin

4,356

4,157

12,454

2,198

6,506

3,416

3,665

15,785

5,520

5,280

6,520

7,420

6,850

5,640

5,320

7,420

5,280

5,120

5,120

6,850

5,640

5,320

5,120

5,120

18,558

21,192

47,728

4,316

15,087


11,160

15,690

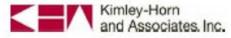
46,253

360

615

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject	HEC-1 Input Pa	rameters -	LAG	
Designed by	LSM	Date	9/22/2011	
Checked by	MAF	Date	10/5/2011	


Project No. 092528005

	Upper	996	6,490	6,360	2,757	
	Upper-Mid	5,400	6,360	5,440	13,081	
	Lower-Mid	3,031	5,440	5,160	9,972	
	Lower	2,659	5,160	4,970	9,947	
030	Subbasin	12,086	6,490	4,970	35,758	603
	Upper	759	5,960	5,600	1,103	
	Upper-Mid	912	5,600	5,280	1,540	
	Lower-Mid	2,248	5,280	4,960	5,958	
	Lower	3,515	4,960	4,834	18,562	
035	Subbasin	7,434	5,960	4,834	27,163	395
	Upper	1,216	6,480	6,240	2,738	
	Upper-Mid	1,570	6,240	5,840	3,109	
	Lower-Mid	6,183	5,840	4,940	16,205	
	Lower	3,494	4,940	4,732	14,319	
040	S ubbasin	12,462	6,480	4,732	36,371	620
	Upper	2,574	6,560	6,000	5,518	
	Upper-Mid	4,585	6,000	5,200	10,975	
	Lower-Mid	3,818	5,200	4,806	11,886	
	Lower	3,307	4,806	4,689	17,583	
045	Subbasin	14,284	6,560	4,689	45,962	510
	Upper	6,616	4,689	4,588	53,547	
050	Subbasin	6,616	4,689	4,588	53,547	81
	Upper	9,986	4,840	4,588	62,860	
055	Subbasin	9,986	4,840	4,588	62,860	133

Notes:

Longest flowpath split up into segments of similar slope and slope calculated using City of Tucson methodology (1998)

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek Subject HEC-1 Input Parameters - LAG											
Designed by			9/22/2011	Project No.	092528005						
Checked by	MAF	Date	10/5/2011								

For drainage basins greater than one square mile:

$TLAG = 22.1K_n \left(\frac{L L_c}{S^{0.5}}\right)^6$	Lag Equation (710) from Truckee Meadows Regional Drainage Manual (2009)
e TLAG =	Lag Time (hr)
K _n =	Manning's Roughness Factor for the Basin Channels
L =	Length of the Longest Watercourse (mi)
L _c =	Length Along Longest Watercourse Meastured Upstream to a Point
	Opposite the Centroid of the Basin (mi)
S =	Representative (Average) Slope of the Longest Watercourse (ft/mi)
	$K_n =$ L = L _c =

Subbasin	K _n	L	L _c	S	TLAG
	[]	[mi]	[mi]	[ft/mi]	[hrs]
005	0.12	2.64	1.22	329	1.50
010	0.12	2.78	1.42	617	1.45
015	0.12	2.64	0.98	693	1.24
020	0.12	2.36	0.89	360	1.28
025	0.12	2.99	1.66	615	1.56
030	0.10	2.29	1.03	603	1.02
035	0.08	1.41	0.50	395	0.59
040	0.07	2.36	1.09	620	0.73
045	0.07	2.71	1.44	510	0.87
050	0.05	1.25	0.74	81	0.52
055	0.05	1.89	1.02	133	0.61

Notes:

Roughness factor K_n interpolated from Table 703 in City of Sparks Hydrologic Criteria and Drainage Design Manual (1998)

ATTACHMENT 4: COMPOSITE CURVE NUMBER CALCULATIONS

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek Subject HEC-1 Input Parameters - Curve Number by Subbasin Designed by LSM Date 9/26/2011 Project No. 092528005 Checked by MAF Date 10/5/2011

Subbasin ID	Soil Area ¹	HSG	Land Use	CN	Area*CN	Composite CN
	[mi ²]				[mi ²]	
	0.65	С	OS	80	51.8	
	1.02	D	OS	80	82.0	1
5	1.67	, j			133.7	80
	0.12	В	OS	51	6.2	2
	1.19	D	OS	71	84.5	
10	1.31				90.8	69
	0.02	В	OS	51	0.9	
	2.99	D	OS	71	212.0	1
15	3.00				212.9	71
	0.01	С	OS	80	1.1	2
	1.17	D	OS	71	83.1	1
20	1.18			N	84.2	71
	0.22	В	OS	51	11.1	
	3.07	D	OS	71	217.8	1
	0.09	D	GR	86	7.9	1
25	3.38				236.9	70
	0.01	В	GR	74	0.6	
	0.01	С	GR	82	0.5	1
	0.07	D	GR	86	6.3	
	0.09	D	OS	85	7.4	
	0.17	D	OS	89	15.4	
	0.37	D	OS	80	29.8	
	1.02	D	OS	71	72.4	
	0.00	D	Paved	98	0.2	
30	1.74				132.7	76
	0.00	В	GR	74	0.3	
	0.03	В	OS	35	1.2	
	0.00	В	OS	41	0.0	
	0.02	С	GR	82	1.2	
	0.00	С	LDS	79	0.2	
	0.05	С	OS	47	2.3	
	0.04	D	GR	83	3.0	
	0.02	D	OS	85	1.6	
	0.36	D	OS	89	31.8	
	0.00	D	OS	71	0.0	
35	0.52				41.7	81

Notes/Assumptions²

Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Fair)

Sagebrush with Grass Understory (Fair) Pinyon-Juniper (Good)

Sagebrush with Grass Understory (Fair) Pinyon-Juniper (Good)

Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Good)

Sagebrush with Grass Understory (Fair) Pinyon-Juniper (Good) Farmsteads - buildings, lanes, driveways, etc.

Farmsteads - buildings, lanes, driveways, etc. Farmsteads - buildings, lanes, driveways, etc. Farmsteads - buildings, lanes, driveways, etc. Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Poor) Pinyon-Juniper (Fair) Pinyon-Juniper (Good)

Farmsteads - buildings, lanes, driveways, etc. Sagebrush with Grass Understory (Good) Pinyon-Juniper (Good) Farmsteads - buildings, lanes, driveways, etc.

Sagebrush with Grass Understory (Good) Farmsteads - buildings, lanes, driveways, etc. Sagebrush with Grass Understory (Poor) Pinyon-Juniper (Poor) Pinyon-Juniper (Good)

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek Subject HEC-1 Input Parameters - Curve Number by Subbasin Designed by LSM Date 9/26/2011 Project No. 092528005 Checked by MAF Date 10/5/2011

Subbasin ID	Soil Area ¹	HSG	Land Use	CN	Area*CN	Composite CN	Notes/Assumptions ²
	[mi ²]		(6	[mi ²]		
	0.02	В	GR	67	1.0		
	0.00	В	MDR	65	0.0	┤ ┃	
	0.04	B	MDS	70	2.7	- 1	
	0.00	В	PSP	98	0.3	1	
	0.00	С	GR	77	0.0	╡ ║	
	0.00	С	MDR	77	0.0	1	
	0.04	С	MDS	80	2.8	1	
	0.00	С	PSP	98	0.0	1	
	0.60	D	GR	83	49.6	┨ ┃	
	0.04	D	MDR	82	3.0	1	
	0.03	D	MDS	82	2.8	1	
	0.01	D	PR	88	0.8	1	
	0.05	D	OS	89	4.6	1 ∥	Pinyon-Juniper (Poor)
40	0.82				67.6	82	
	0.00	В	GR	67	0.1		
	0.04	В	MDS	70	3.0	1	
	0.00	В	PSP	98	0.1	1	
	0.00	С	GR	77	0.2	┨ ┃	
	0.04	С	MDS	80	3.4	ן ו	
	0.00	C	PSP	98	0.2	ן ך	
	0.60	D	GR	83	50.1		
	0.02	D	MDR	82	1.5]	
	0.04	D	MDS	82	2.9		
	0.10	D	OS	70	6.7		Sagebrush with Grass Understory (Fa
	0.09	D	PSP	98	8.8		
	0.01	D	PR	88	0.8		
45	0.94				77.7	82	
	0.00	В	GC	92	0.4		
	0.02	В	GR	67	1.4		
	0.12	В	MDS	70	8.4		
	0.00	В	PR	77	0.4		
	0.00	В	PSP	98	0.3		
	0.02	C	GC	94	1.6		
	0.00	C	GR	77	0.1		
	0.07	С	MDS	80	5.5		
	0.00	С	PSP	98	0.3		
	0.01	D	MDS	82	1.1		
	0.04	D	Paved	98	3.6		
50	0.29				22.9	79	

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek Subject HEC-1 Input Parameters - Curve Number by Subbasin Designed by LSM Date 9/26/2011 Project No. 092528005 Checked by MAF Date 10/5/2011

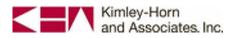
Subbasin ID	Soil Area ¹	HSG	Land Use	CN	Area*CN	Composite CN
	[mi ²]				[mi ²]	
	0.00	Α	GR	48	0.0	
	0.02	А	MDS	54	1.0	1
	0.02	Α	OS	35	0.7	1
	0.00	В	GR	67	0.1	
	0.00	В	HDS	72	0.0	
	0.01	В	MDS	70	0.7	
	0.00	В	PSP	98	0.0	
	0.02	C	GR	77	1.3	
	0.00	С	LDS	79	0.2	
	0.20	C	MDS	80	16.3	
	0.04	C	OS	47	1.8]
	0.00	С	PSP	98	0.3	1
	0.02	D	GR	83	1.7	1
	0.05	D	HDS	86	4.5]
	0.11	D	MDS	85	9.0	
	0.02	D	OS	55	1.2	
	0.00	D	PSP	98	0.0	
	0.03	D	Paved	98	2.9	
55	0.54				41.5	77

Notes/Assumptions²

Sagebrush with Grass Understory (Good)

Sagebrush with Grass Understory (Good)

Sagebrush with Grass Understory (Good)

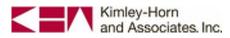

15.41 Total Contributing Area

¹Soil areas within each subbasin from ArcGIS analysis

²Poor: <30% ground cover (litter, grass and brush overstory) Fair: 30 to 70% ground cover

Good: >70% ground cover

ATTACHMENT 5: SOIL PARAMETERS

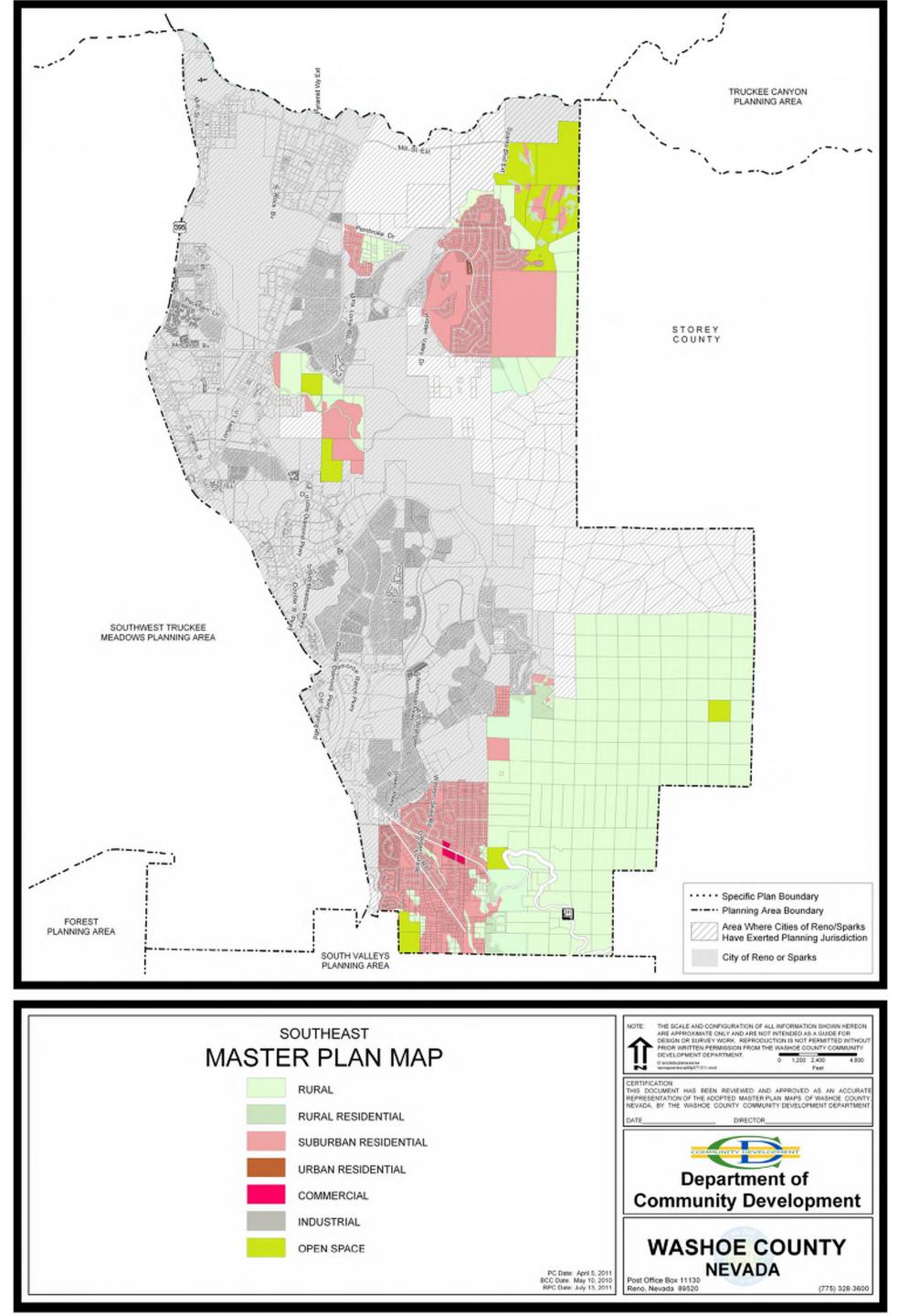

NRCS Soils Data - Map Unit Areas by Subbasin

1						
	Map Unit		Area	Area		
Basin ID	Symbol	Hydr_Soil	(acres)	(mi ²)	Soil Survey	Soil Description
5	1520	D	545	0.85	NV628	Duco-Smallcone-Cagle association
5	893	C	404	0.63	NV628	Indiano-Duco-Cagle association
5	983	D	121	0.19	NV628	Koontz-Nosrac association
10	1520	D	760	1.19	NV628	Duco-Smallcone-Cagle association
10	1011	B	42	0.07	NV628	Gabica-Easte-Burnborough association
10	561	D	36	0.06	NV772	Gabica-Easte-Burnborough association
15	1520	D	1662	2.60	NV628	Duco-Smallcone-Cagle association
15	1011	В	3	0.00	NV628	Gabica-Easte-Burnborough association
15	1011	В	9	0.01	NV628	Gabica-Easte-Burnborough association
15	561	D	124	0.19	NV772	Gabica-Easte-Burnborough association
15	1520	D	123	0.19	NV772	Duco-Smallcone-Cagle association
20	1520	D	749	1.17	NV628	Duco-Smallcone-Cagle association
20	893	С	9	0.01	NV628	Indiano-Duco-Cagle association
25	1520	D	1578	2.47	NV628	Duco-Smallcone-Cagle association
25	1011	В	142	0.22	NV628	Gabica-Easte-Burnborough association
25	561	D	33	0.05	NV772	Gabica-Easte-Burnborough association
25	1010	D	11	0.02	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
25	151	D	47	0.07	NV772	Doten variant silty clay, strongly saline
25	1520	D	0	0.00	NV772	Duco-Smallcone-Cagle association
25	1520	D	351	0.55	NV772	Duco-Smallcone-Cagle association
30	1520	D	681	1.06	NV628	Duco-Smallcone-Cagle association
30	251	С	4	0.01	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
30	482	В	7	0.01	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
30	1010	D	84	0.13	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
30	1520	D	340	0.53	NV772	Duco-Smallcone-Cagle association
35	1520	D	286	0.45	NV628	Duco-Smallcone-Cagle association
35	251	С	28	0.04	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
35	482	В	17	0.03	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
40	1520	D	462	0.72	NV628	Duco-Smallcone-Cagle association
40	251	С	17	0.03	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
40	251	С	6	0.01	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
40	482	В	36	0.06	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
40	1010	D	1	0.00	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
40	1520	D	4	0.01	NV772	Duco-Smallcone-Cagle association
45	1520	D	480	0.75	NV628	Duco-Smallcone-Cagle association
45	251	С	11	0.02	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
45	251	С	19	0.03	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
45	482	В	30	0.05	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
45	1010	D	14	0.02	NV772	Gabica very gravelly sandy loam, 8 to 30 percent slopes
45	1520	D	49	0.08	NV772	Duco-Smallcone-Cagle association
50	110	D	4	0.01	NV628	Jowec variant sandy loam, 4 to 8 percent slopes
50	1520	D	1	0.00	NV628	Duco-Smallcone-Cagle association
50	171	D	4	0.01	NV628	Indian Creek gravelly sandy loam, 0 to 4 percent slopes
50	251	С	28	0.04	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
50	251	С	33	0.05	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
50	260	C	0	0.00	NV628	Acrelane-Rock outcrop complex, 15 to 50 percent slopes
50	360	-	4	0.01	NV628	Pits
50	482	В	71	0.11	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
50	971	B	27	0.04	NV628	Aladshi sandy loam, 2 to 4 percent slopes
50	971	B	12	0.02	NV628	Aladshi sandy loam, 2 to 4 percent slopes
50	991	-	1	0.02	NV628	Xeric Torriorthents-Urban land complex
55	160	A	4	0.00	NV628	Incy sand, 4 to 8 percent slopes
55	100	D	77	0.01	NV628	Indian Creek gravelly sandy loam, 0 to 4 percent slopes
55	251	C	148	0.12	NV628	Cassiro gravelly sandy loam, 4 to 8 percent slopes
55	260	C	9	0.23	NV628	Acrelane-Rock outcrop complex, 15 to 50 percent slopes
55	260	C	9	0.01	NV628	Acrelane-Rock outcrop complex, 15 to 50 percent slopes
00	200	U	7	0.01	111020	הי המהיה אטנא טענה טף הטווויףובא, דש נט שט אבו הבוונ שטאבש

	Map Unit		Area	Area		
Basin ID	Symbol	Hydr_Soil	(acres)	(mi ²)	Soil Survey	Soil Description
55	350	D	4	0.01	NV628	Mizel very gravelly coarse sandy loam, 15 to 50 percent slopes
55	350	D	0	0.00	NV628	Mizel very gravelly coarse sandy loam, 15 to 50 percent slopes
55	482	В	4	0.01	NV628	Holbrook cobbly loamy sand, 2 to 8 percent slopes
55	500	Α	17	0.03	NV628	Mottsville sand, 0 to 4 percent slopes
55	880	D	10	0.01	NV628	Zephan-Rock outcrop-Smallcone complex, 15 to 50 percent slopes
55	880	D	9	0.01	NV628	Zephan-Rock outcrop-Smallcone complex, 15 to 50 percent slopes
55	881	С	5	0.01	NV628	Zephan very gravelly sandy loam, 30 to 50 percent slopes
55	882	С	10	0.02	NV628	Zephan stony sandy loam, 15 to 30 percent slopes
55	930	D	1	0.00	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	8	0.01	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	8	0.01	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	13	0.02	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	930	D	7	0.01	NV628	Old Camp stony sandy loam, 15 to 30 percent slopes
55	971	В	6	0.01	NV628	Aladshi sandy loam, 2 to 4 percent slopes

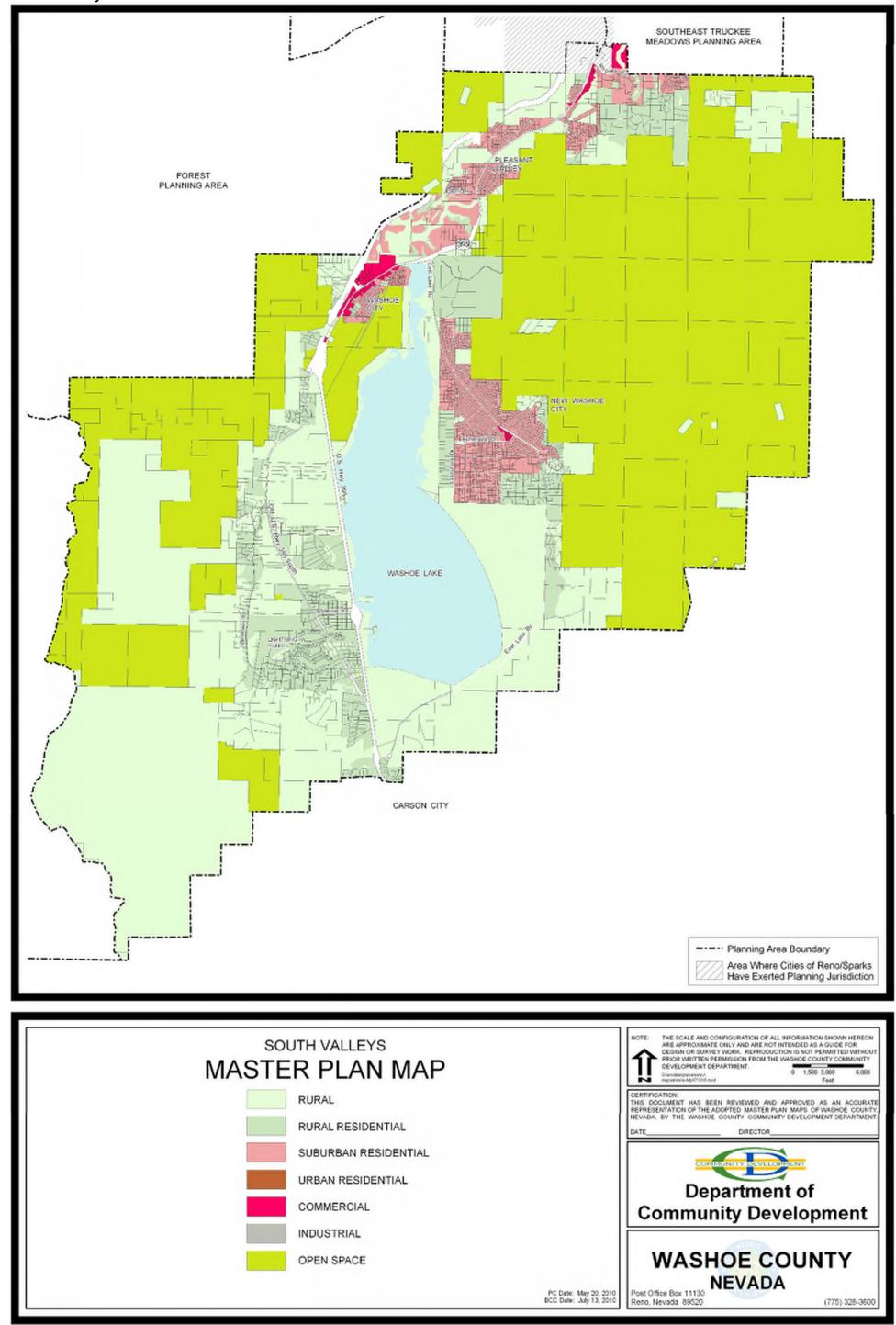
ATTACHMENT 6: LAND USE CALCULATIONS

LDR MDR	HDR	LDS/ LDS 2	MDS/ MDS 4	HDS	LDU	MDU	HDU	PR	PSP	GC	NC	тс	I	GR/ GRR	OS
LDR H	Н	М	М	М	L	L	L	Н	М	L	L	L	L	Н	Н
MDR	Н	Н	М	М	М	L	L	Н	М	L	L	L	L	М	Н
	HDR	Н	Н	М	М	М	L	Н	М	L	L	L	L	М	Н
		LDS/ LDS 2	н	Н	М	М	М	Н	М	L	L	L	L	М	н
			MDS/ MDS 4	Н	Н	М	М	Н	М	L	L	L	L	М	н
				HDS	Н	Н	М	Н	М	L	М	М	L	М	Н
					LDU	н	Н	Н	Н	М	М	L	L	М	Н
						MDU	Н	Н	Н	М	М	L	М	L	Н
							HDU	Н	Н	М	М	М	М	L	Н
								PR	Н	н	н	Н	М	Н	Н
									PSP	Н	Н	Н	Н	М	Н
										GC	Н	Н	М	L	Н
											NC	Н	М	L	Н
												тс	М	L	Н
H - High Co	mpatibil	lity: Lit	tle or n	o scre	ening	or buff	ering r	necess	sary.					L	М
M - Medium	Compa	atibility:	Some	scree	ening a	nd buf	fering	neces	sary.					GR/ GRR	н
L - Low Cor	mpatibil	ity: Sig	gnificar	t scre	ening a	and bu	ffering	nece	ssary.					OS	Н


Table 3: Land Use Compatibility Matrix

Regulatory Zones

Residential		Non-Residential						
LDR - Low Densit	ty Rural	PR - Parks and Recreation						
MDR - Medium D	ensity Rural	PSP - Public and Semi-Public Facilities						
HDR - High Dens	ity Rural	GC - General Commercial						
LDS/LDS 2 - Low	Density Suburban	NC - Neighborhood Commercial/Office						
MDS/MDS 4 - Me	dium Density Suburban	TC - Tourist Commercial						
HDS - High Dens	ity Suburban	I - Industrial						
LDU - Low Densi	ty Urban	GR - General Rural						
MDU - Medium D	ensity Urban	GRR - General Rural Residential						
HDU - High Dens	ity Urban	OS - Open Space						
	g shall be made to the satisfaction of Washoe to staff before completion of project review.							
Source: Was	hoe County Department of Community Dev	velopment						

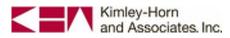

Washoe County Master Plan

SOUTHEAST TRUCKEE MEADOWS AREA PLAN

Washoe County Master Plan

SOUTH VALLEYS AREA PLAN

September 9, 2010


Washoe County Land Use Data - Land Use Areas by Subbasin

005	OS	129	0.20
005	OS	941	1.47
010	OS	34	0.05
010	OS	804	1.26
015	OS	246	0.38
015	OS	1675	2.62
020	OS	0	0.00
020	GR	1	0.00
020	OS	756	1.18
025	OS	453	0.71
025	GR	251	0.39
025	OS	1459	2.28
030	OS	503	0.79
030	GR	400	0.62
030	OS	211	0.33
030	RDS	1	0.00
035	OS	133	0.21
035	GR	152	0.24
035	LDS	4	0.01
035	MDR	10	0.02
035	MDS	2	0.00
035	OS	29	0.05
035	RDS	0	0.00
040	OS	33	0.05
040	GR	392	0.61
040	MDR	23	0.04
040	MDS	69	0.11
040	PR	6	0.01
040	PSP	2	0.00

	Land Use	Area	Area
Subbasin ID	Code ¹	(acres)	(mi ²)
045	PSP	114	0.18
045	GR	388	0.61
045	MDR	11	0.02
045	MDS	77	0.12
045	OS	4	0.01
045	PR	6	0.01
045	PSP	2	0.00
050	OS	24	0.04
050	GC	13	0.02
050	GR	14	0.02
050	MDS	128	0.20
050	PR	3	0.00
050	PSP	3	0.01
055	OS	63	0.10
055	GR	25	0.04
055	HDS	33	0.05
055	LDS	1	0.00
055	MDS	216	0.34
055	OS	7	0.01
055	PSP	2	0.00

¹ Land use codes in italics represent areas outside of the master planned area limits. Land use codes were assigned for the purpose of this study based on topography, existing land use and adjacent land use.

ATTACHMENT 7: MUSKINGUM-CUNGE CHANNEL ROUTING

Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek									
Subject Manning's N Calculation									
Designed by		Date		Project No.					
Checked by		Date							

where

- n = Manning's n
- n_0 = base value of n for a straight, uniform channel
- n_1 = value for surface irregularities
- n_2 = value for variations in channel cross section
- n₃ = value for obstruction
- n₄ = value for vegetation
- m = adjustments for meanders

R015				0.073
R025				0.078
R030				0.100
R035				0.108
R040				0.073
R045				0.086
R050				0.053
R055				0.045

References:

Ven Te Chow, *Open Channel Hydraulics*, 1959. Table 802, TMRDM

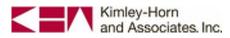
Project Geiger Grade Relignment - Hydrology for Bailey Canyon Creek

Subject HEC-1 Input Parameters - Routing Reaches

Designed by	MAF	Date	9/27/2011	
Checked by	LSM	Date	10/5/2011	

Project No. 092528005

Muskingum-Cunge Routing Data (RD Record in HEC-1)


Routing						Bottom	Side
Reach	Length	USGE	DSGE	Slope	Manning's n	Width	Slopes
	[ft]	[ft]	[ft]	[ft/ft]		[ft]	[XX:1]
R015	3,529	5720	5560	0.045	0.073	100	2
R025	9,817	5560	5120	0.045	0.078	50	2
R030	4,069	5120	4960	0.039	0.100	25	3
R035	3,714	4960	4834	0.034	0.108	70	4
R040	3,539	4834	4730	0.029	0.073	30	50
R045	1,734	4730	4690	0.023	0.086	30	50
R050	5,748	4690	4588	0.018	0.053	20	2
R055	9,490	4834	4588	0.026	0.045	8	10

Notes:

Elevations from USGS Quadrangle Maps


Bottom width and side slopes estimated from typical cross sections cut in ArcGIS

ATTACHMENT 8: FLOW SPLIT CALCULATIONS

One of FORTUNE's 100 Best Companies to Work For

Aerial Source: Google Maps (accessed 10/3/2011)

Photo: Bailey Canyon Creek Culvert Crossing at Toll Road. Looking downstream (northwest) at 2-8'x5' Concrete Box Culverts. (Photo Date: 9/16/2011)

Photo: Bailey Canyon Creek Culvert Crossing at Toll Road. Looking upstream (southeast) at upstream channel. (Photo Date: 9/16/2011)

Photo: Bailey Canyon Creek Culvert Crossing at Toll Road. Looking downstream (northwest) at downstream channel. (Photo Date: 9/16/2011)

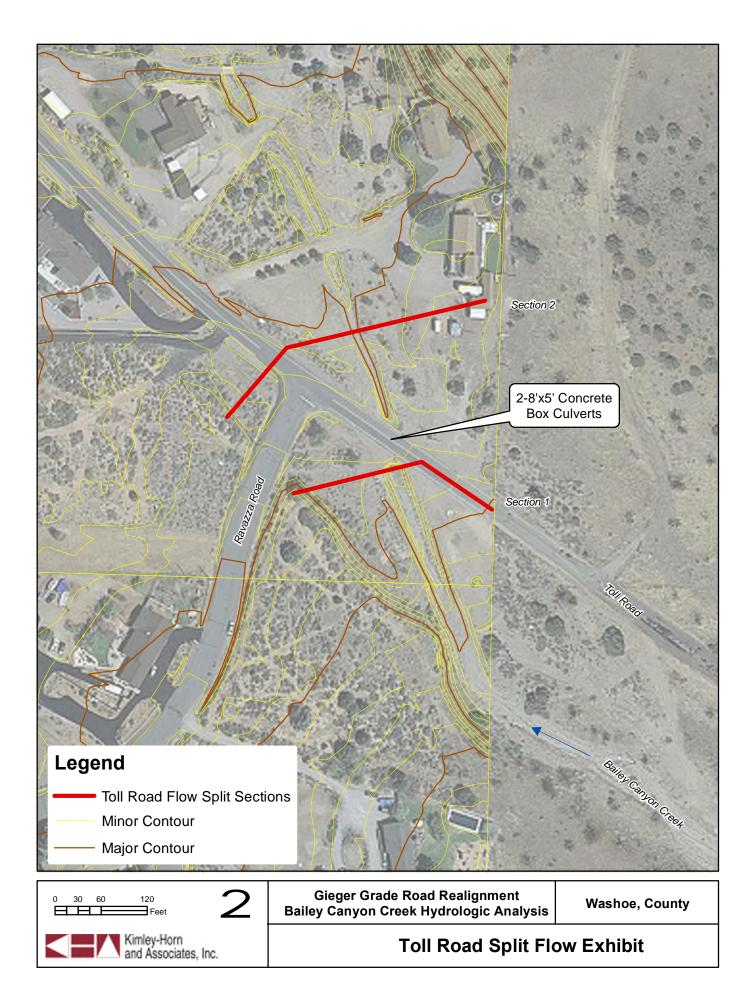
Sheet No _____ of _____ Job <u>Letter black </u>

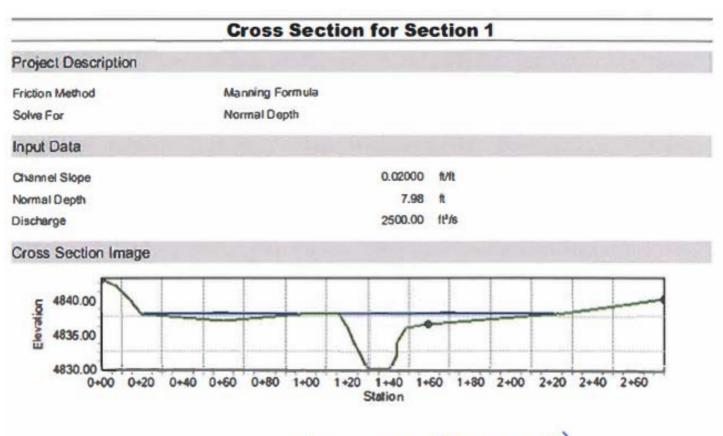
SPLIT KOUL NOIES AT TOLL AS US OF INTERSECTION BETRICEN TOLL AS + PANAEZA AS

DETERMINE DIVERSION PATING LURAS AT TOU ROAD

FROM HY-8 WAR, CHLINCHT CAMERY AT OVERIDATING 15 510 cts (OVERIDATING AT ELEVATION 4835.5)

SEE AWACHED EXHIBIT FOR NORMAL DOTAL CLOSS SECTION AS TOLL PARD TO DETERMINE OVERAUME DEPENDENCE AND DAS OF THE RAME TO DETERMINE FOOL SPLITS.


1) SECTION I REPEATS THE UPSTREAM CHAMME WITHE FOUL CAN'S THE CHAMMER, AND CONTINUES BOTH WICH TOLL RAPP IN LANEY CANTON CACEN. AND AZONG TALL PARS.


→ Gal CKAR THE CAMMUNEL AT ~ 4835.5. CHAMMEL CAMMUNY = 1306 cts CURVENT CAMMUNY - 570 cts D = 796 cts → Foll HOLI 2,000 cts, CLEWARDON = 4837.60 Quantum 18490 cts Quantum 500 cts → Foll hour 2,500 cts, CLEWARDON 4837.9% Quantum 1990 cts Quantum = 1,990 cts Quantum = 1,990 cts Quantum = 400 cts

- 2) SECTION 2 REPLECTS LANCY CARINAN CLEER DOWNSTRICTION OF TOUR ROAD, AND INCLUDES FROM ALONG TOUR ROAD

- CROSS SECTION FOR FUL SECTION 2" SHOWS APPLOXIMATE DEVIDE OF FLOAT SPETT. "CLOSS SECTION FOR SECTION 2 AT BALLY CANNON CREDE" SNOWS SECTION THAT SHITS IN BALLEY CANYON CLEEK. "CROSS SECTION FOR SECTION 2 ALONG TOLL LOAD" SHOWS SECTION THAT DIVERS TO TOLL ROAD.

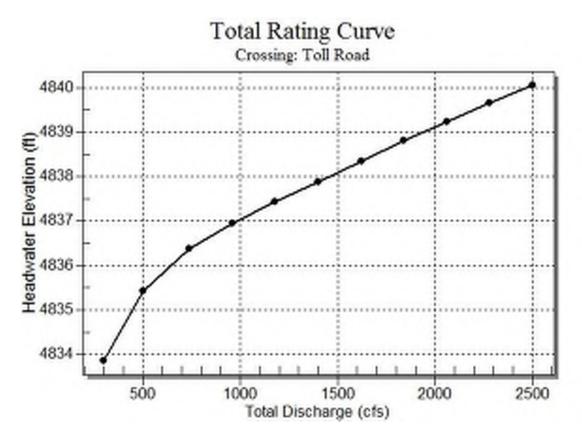
- SEE ATTACHED TABLE FOR DIVERSION RAYING WANT

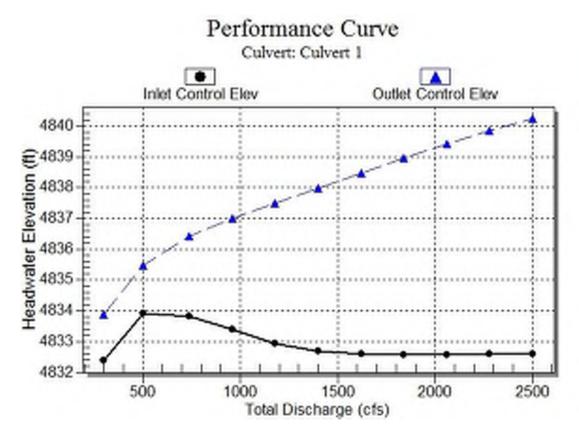
BALLET CANTON CREEK u/s OF TOLL ROAD. (u/s of box curveres)

HY-8 Culvert Analysis Report

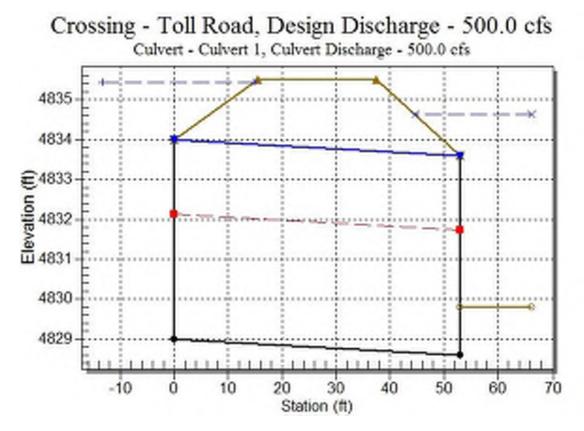
Table 1 - Summary of Culvert Flows at Crossing: Toll Road

Rating Curve Plot for Crossing: Toll Road




Table 2 - Culvert Summary Table: Culvert 1

	****	*****	******	*****	*****	*****	****	


Inlet Elevation (invert): 4829.00 ft, Outlet Elevation (invert): 4828.60 ft

Culvert Length: 53.00 ft, Culvert Slope: 0.0075

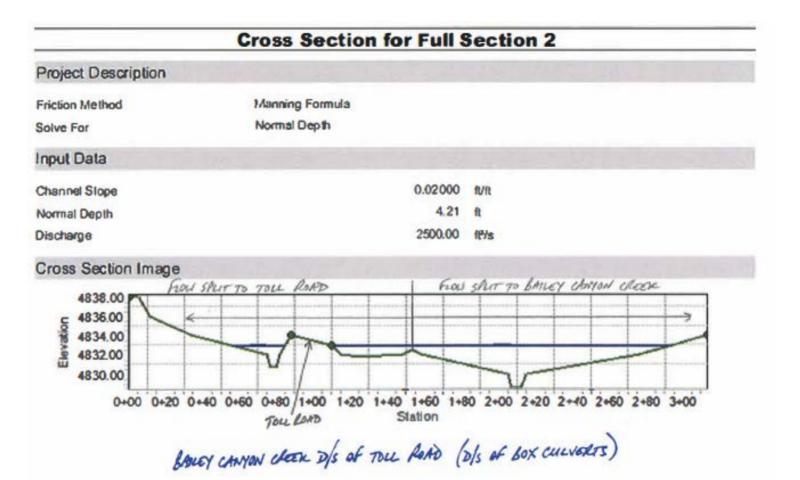
Culvert Performance Curve Plot: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 4829.00 ft Outlet Station: 53.00 ft Outlet Elevation: 4828.60 ft Number of Barrels: 2

Culvert Data Summary - Culvert 1

Barrel Shape: Concrete Box Barrel Span: 8.00 ft Barrel Rise: 5.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Inlet Type: Conventional Inlet Edge Condition: 1:1 Bevel (45° flare) Wingwall Inlet Depression: NONE


Table 3 - Downstream Channel Rating Curve (Crossing: Toll Road)

Tailwater Channel Data - Toll Road

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 5.00 ft Side Slope (H:V): 1.30 (_:1) Channel Slope: 0.0130 Channel Manning's n: 0.0350 Channel Invert Elevation: 4829.80 ft

Roadway Data for Crossing: Toll Road

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 4835.50 ft Roadway Surface: Paved Roadway Top Width: 22.00 ft

	Cro	ss S	Bect	ion	for	Sec	tio	1 2 a	t B	aile	y Ca	anyo	on C	ree	k	_
Project Descri	ption															
Friction Method			Manning Formula													
Solve For				Nom	nal De	pth										
Input Data																
Channel Slope								0.0	2000	fl/ft						
Normal Depth									4.32	ft						
Discharge								25	00.00	ft ^p /s						
Cross Section	Imag	e														
4834.00															-	-
6 4833.00 4832.00	-													-		
4832.00 4831.00		-		-		-										_
4830.00 4829.00							-									
	1+60	1+70	1+80	1+90	2+00	2+10	2+20	2+30 Statio		2+50	2+60	2+70	2+80	2+90	3+00	3+10

FLOW SPUT SECTION TO BALLEY CANYON CREEK

Rating Table for Section 2 at Bailey Canyon Creek

Project Description

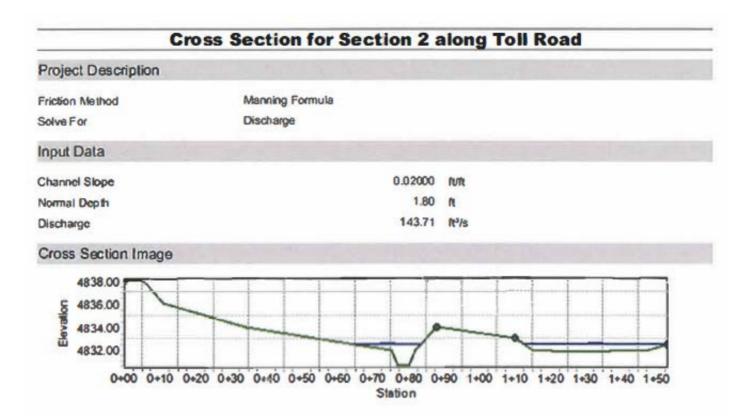
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.02000	fult
Normal Depth	4.32	ft
Section Definitions		

Station (ft)	Elevation (ft)	
1+53	4832.50	
1+58	4832.00	
2+05	4830.00	
2+07	4828.70	
2+12	4828.70	
2+15	4830.00	
2+76	4832.00	
3+13	4834.00	

Roughness Segment Definitions

Start Station	Ending Station	Coefficient	
(1+53, 4832.50)	(3+13, 4834.00)	0.035	

Water Surface Elevation (ft)	Discharge (ft%)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
4828.00					
4828.50					
4829.00	4.15	2.48	1.6	6.30	6.15
4829.50	22.76	4.35	5.23	8.48	8.08
4830.00	55.18	5.66	9.7	5 10.65	10.00
4830.50	88.81	4.13	21.5	37.67	37.00


 Bentley Systems, Inc. Haestad Methods Solibio #directed Master V8I (SELECT series 1) [08.11.01.03]

 10/4/2011 11:07:31 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Rating Table for Section 2 at Bailey Canyon Creek

Input Data

Water Surface Elevation (fl)	Discharge (ft%s)	Velocity (ft/s)	Flow Area (ft ²)	Wetted Perimeter (ft)	Top Width (ft)
4831.00	226.03	4.83	46.75	64.69	64.00
4831.50	489.90	5.73	85.50	91.71	91.00
4832.00	913.17	6.63	137.75	118.73	118.00
4832.50	1580.08	7.89	200.31	133.02	132.25
4833.00	2459.84	9.15	268.75	142.78	141.50
4833.50	3514.16	10.28	341.81	152.55	150.75
4834.00	4743.51	11.31	419.50	162.31	160.00

Rating Table for Section 2 along Toll Road

Project Description

Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.02000	ft/ft
Normal Depth	1.80	ft
Section Definitions		

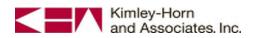
Station (ft)	Elevation (ft)
0+00	4838.00
0+05	4838.00
0+11	4836.00
0+34	4834.00
0+75	4832.00
0+77	4830.70
0+80	4830.70
0+82	4832.00
0+88	4834.00
1+10	4833.00
1+15	4832.00
1+26	4831.80
1+48	4832.00
1+53	4832.50

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
(0+00, 4838.00)	(0+88, 4834.00)	0.035	
(0+88, 4834.00)	(1+10, 4833.00)	0.015	
(1+10, 4833.00)	(1+53, 4832.50)	0.035	

Water Surface

Mashanna (fillia). M


Malonthe /Alab

10/4/2011 11:07:21 AM

Rating Table for Section 2 along Toll Road

Input Data

clevation (it)	consensations (multiple)	VEICERY (IVS)	FIOW ALEB (IIF)	welleo reimeler (h)	(op woous (n)
4830.00					
4000.00					
4830.50					
4831.00	2.50	2.40	1.04	4.10	3.92
4831.50	13.97	4.13	3.38	5.94	5.46
4832.00	22.75	2.32	9.80	40.77	40.00
4832.50	143.71	4.15	34.61	60.19	59.25
4833.00	380.30	5.61	67.80	75.08	73.50
4833.50	748.76	6.79	110.24	98.44	96.25
4834.00	1301.17	7.93	164.05	121.79	119.00

	Split to Bailey Canyon Creek ^{1,2}	Split to Toll Road ^{1,3}	Total Flow
Elevation	(cfs)	(cfs)	(cfs)
4828.0	0	0	0
4828.5	0	0	0
4829.0	4	0	4
4829.5	23	0	23
4830.0	55	0	55
4830.5	89	0	89
4831.0	225	0	225
4831.5	490	0	490
4832.0	913	23	936
4832.5	1580	144	1724
4833.0	2460	380	2840
4833.5	3514	749	4263
4834.0	4744	1301	6045

Diversion Rating Table for Flow Split at Toll Road Near Intersection of Toll Road and Ravazza Road*

¹No flow travels along Toll Road until flow overtops the culvert capacity of 510 cfs.

²From Rating Table for "Cross Section for Section 2 at Bailey Canyon Creek"

³From Rating Table for "Cross Section for Section 2 along Toll Road".

*Note that this rating table was developed referencing Sections 1 and 2 shown in the split flow exhibit attached. Section 1 reflects the upstream channel to establish the culvert capacity ONLY. Once the culvert capacity is reached, flow overtops section 1 and overtops Toll Road. Section 2 represents the actual split where flow divides between Toll Road and Bailey Canyon Creek.

POE	ential Flow Split at Ge	eiger Grade Koad
Project Description	e National a constant	제 사회 제작과 관심 소통소. ~
Friction Method	Manning Formula	
Solve For	Discharge	
input Data	·	$e_{2}^{2} = e_{2}^{2} e_$
Channel Slope	0.01	390 fl/ft
Normal Depth	7	7.40 ft
Section Definitions		
Station (ft)	Elevation (ft)	
	0÷00	4605.00
	0+19	4604.00
	0+2\$	4602.00
	0+54	4602.00
	1+10	4602.00
	1+16	4602.00
	1+48	4602.00
	1+70	4600_00
	2+16	4598.00
	2+26	4596.00
	2+31 2+38	4594.50 4594.50
	2+39	4596.00
	2+41	4598.00
	2+42	4600.00
	2+47	46€2.0€
	2+63	4603.50
	2+99	4603.30
	3+08	4602.00
	3+48	4602.00
	4+58	4602.70
Roughness Segment Definitions		
	2	
Start Station	Ending Station	Roughness Coefficient
uppleterist of the source of source		
10/6/2011 2:00:09 PM 27 Siem	Bentley Systems, Inc. Haestad Metho ons Company Drive Suite 200 W Watertowi	ods So Buintle¢Etten Master V8I (SELECTsories 1) [08.11.01.0 n, CT 06795 USA +1-203-755-1666 Page 1 of

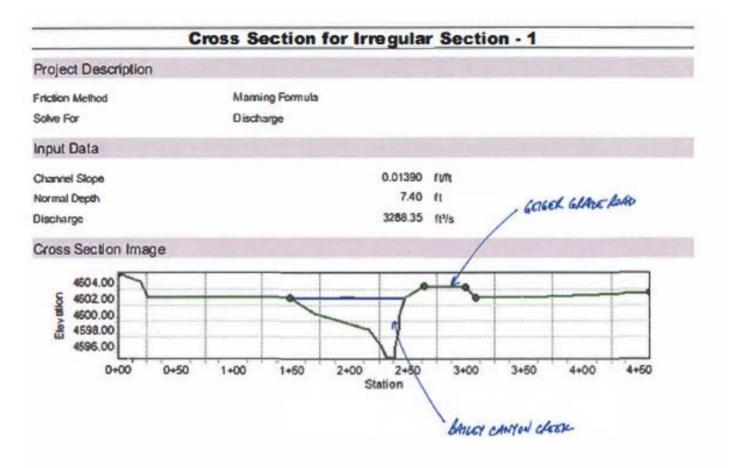
医延转 帮 电超分 找 一 医闭口室中 脱离子

Potential Flow Split at Geiger Grade Road

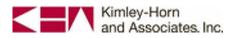
Input Data

Start Station	Ending Station	Roughness Coefficient
(0+00, 4605.00)	(1+48, 4602.00)	0.045
(1+48, 4602 00)	(2+63, 4603.50)	0.035
(2+63, 4603.50)	(2+99, 4603.30)	0.015
(2+99, 4603.30)	(3+08, 4602.00)	0.015
(3+08, 4602.00)	(4+58, 4602.70)	0.035

Options

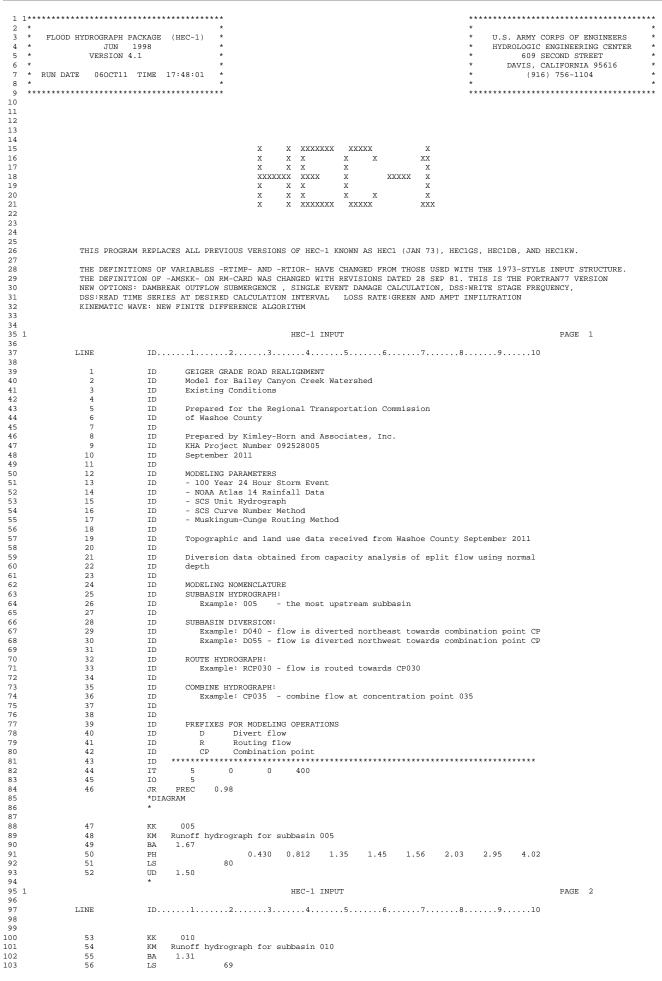

Gurrent Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskiis Melhod		
Results			
Discharge		3288.35	N?/s
Elevation Range	4594.50 to 4605.00 R		
Flow Area		311.17	ft2
Wetled Perimeter		101.43	R
Hydraulic Radius		3.07	R
Top Width		97.65	ft
Normal Depth		7.40	ft
Critical Depth		8.06	R
Critical Slope		0.01630	fl/ft
Velocity		10.57	R/s
Velocity Head		1.74	Et
Specific Energy		9.14	R
Froude Number		1.04	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

Potential Flow Split at Geiger Grade Road					
GVF Output Data					
Upstream Depth	0.00 ft				
Profile Description					
Profile Headloss	0.00 ft				
Downstream Velocity	Infinity fl/s				
Upstream Velocity	Infinity ft/s				
Normal Depth	7.40 fl				
Critical Depth	8.06 ft				
Channel Slope	0.0139D fv/ft				
Critical Slope	0.01630 fl/ft				


 Bentley Systems, Inc.
 Haestad Methods SoBiditife@ EffectMeeMaster V8i (SELECTseries 1) [08.11.01.03]

 0:09 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 3 of 3

10/6/2011 2:00:09 PM



DISCHARGE MUST EXCEED 3,288 cfs TO FISULT IN SPLIT From

ATTACHMENT 9: HEC-1 MODEL OUTPUT

104	57	UD	1.45
105		*	
106			
107	58	KK	CP010
108	59	KM	Combine runoff hydrographs from subbasins 005 and 010
109	60	HC	2
110		*	-
111			
112	61	KK	R015
113	62	KM	Route combined hydrograph at CP010 to CP015
114	63	RD	3529 0.045 0.073 TRAP 100 2
115	00	*	
116			
117	64	KK	015
118	65	KM	Runoff hydrograph for subbasin 015
119	66	BA	3.00
120	67	LS	71
121	68	UD	1.24
122		*	
123			
123	69	KK	CP015
125	70	KM	Combine routed hydrograph from CP010 with runoff hydrograph
126	71	KM	from subbasin 015
127	72	HC	2
128		*	
129			
130	73	KK	R025
131	74	KM	Route combined hydrograph at CP015 to CP025
132	75	RD	9817 0.045 0.078 TRAP 50 2
133		*	
134			
			020
135	76	KK	020
136	77	KM	Runoff hydrograph for subbasin 020
137	78	BA	1.18
138	79	LS	71
139	80	UD	1.28
140		*	
141			
142	81	KK	025
143	82	KM	Runoff hydrograph for subbasin 025
144	83	BA	3.38
145	84	LS	70
146	85	UD	1.56
147		*	
148 1			HEC-1 INPUT PAGE 3
			INC-1 INFOI
149			
150	LINE	ID	1
151			
152			
153	86	KK	CP025
154			Combine routed hydrograph from CP015 with runoff hydrographs from
	87	KM	
155	88	KM	subbasins 020 and 025
	88 89	KM HC	
155 156			subbasins 020 and 025
155 156 157		HC	subbasins 020 and 025
155 156 157 158	89	HC *	subbasins 020 and 025 3
155 156 157 158 159	89 90	нс * кк	subbasins 020 and 025 3 R030
155 156 157 158	89	HC *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030
155 156 157 158 159	89 90	нс * кк	subbasins 020 and 025 3 R030
155 156 157 158 159 160 161	89 90 91	НС * КК КМ	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030
155 156 157 158 159 160 161 162	89 90 91	HC * KK KM RD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030
155 156 157 158 159 160 161 162 163	89 90 91 92	HC * KK KM RD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3
155 156 157 158 159 160 161 162 163 164	89 90 91 92 93	HC * KK RD * KK	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030
155 156 157 158 159 160 161 162 163 164 165	89 90 91 92 93 94	HC * KK KM RD * KK KK	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030
155 156 157 158 159 160 161 162 163 164	89 90 91 92 93	HC * KK RD * KK	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030
155 156 157 158 159 160 161 162 163 164 165 166	89 90 91 92 93 94 95	HC * KK KM KK KM BA	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74
155 156 157 158 159 160 161 162 163 164 165 166 166	89 90 91 92 93 94 95 95 96	HC * KK KM RD * KK KK KM BA LS	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76
155 156 157 158 159 160 161 162 163 164 165 166 167 168	89 90 91 92 93 94 95	HC * KK KM RD * KK KM BA LS UD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	89 90 91 92 93 94 95 95 96	HC * KK KM RD * KK KK KM BA LS	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	89 90 91 92 93 94 95 96 97	HC * KK RD * KK KM BA LS UD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	89 90 91 92 93 94 95 96 95 96 97 97	HC * KK KM RD * KK KM BA LS UD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	89 90 91 92 93 94 95 96 97	HC * KK RD * KK KM BA LS UD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	89 90 91 92 93 94 95 96 97 96 97 98 99	HC * KK KM BA LS UD * KK KK	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph
155 156 157 158 159 160 161 162 163 164 165 166 166 166 167 168 169 170 171 172 173	89 90 91 92 93 94 95 96 97 97 98 99 100	HC * KK KM RD * KK KK KK KM KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 172 173 174	89 90 91 92 93 94 95 96 97 96 97 98 99	HC * KK KM BA LS UD * KK KK KM KM KM HC	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph
155 156 157 158 159 160 161 162 163 164 165 166 167 168 168 169 170 171 172 173 173 175	89 90 91 92 93 94 95 96 97 97 98 99 100	HC * KK KM RD * KK KK KK KM KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170 171 172 173 174 175 176	89 90 91 92 93 94 95 96 97 97 98 99 100 101	HC * KK KM RD * KK KM KM KM HC *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2
155 156 157 158 159 160 161 162 163 164 165 166 167 168 168 169 170 171 172 173 173 175	89 90 91 92 93 94 95 96 97 97 98 99 100	HC * KK KM BA LS UD * KK KK KM KM KM HC	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170 171 172 173 174 175 176	89 90 91 92 93 94 95 96 97 97 98 99 100 101	HC * KK KM RD * KK KM KM KM HC *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2
155 156 157 158 159 160 161 162 163 164 165 166 168 169 170 171 172 173 174 175 176 177 178	89 90 91 92 93 94 95 96 97 97 98 99 100 101	HC * KK KM RD * KK KM KM KK KK KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170 171 172 173 174 175 176 177 178 179	89 90 91 92 93 94 95 96 97 98 99 100 101	HC * KK KM RD * KK KM BA LS UD * KK KM KM KM KM KK KK KM RD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035
155 156 157 157 160 161 162 163 164 165 166 167 168 167 168 167 170 171 172 173 174 175 176 177 178 179 180	89 90 91 92 93 94 95 96 97 97 98 99 100 101	HC * KK KM RD * KK KM KM KK KK KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181	89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104	HC * * KK KM RD * KK KM KM KM KC * KK KM RD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4
155 156 157 157 160 161 162 163 164 164 165 166 167 168 167 168 167 170 171 172 173 174 175 176 177 178 179 180	89 90 91 92 93 94 95 96 97 97 98 99 100 101	HC * KK KM RD * KK KM BA LS UD * KK KM KM KM KM KK KK KM RD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170 171 172 173 174 175 176 177 179 180 181 182	89 90 91 92 93 94 95 96 97 98 99 100 101 101 102 103 104	HC * * KK KM PD * KK KM KM KM KM KM KM KM KK KK	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035
155 156 157 157 160 161 162 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 176 177 178 180 181 182	89 90 91 92 93 94 95 96 97 98 99 100 101 101 102 103 104 105 106	HC * KK KM BA LS UD * KK KM HC * KK KM KK KM KK KM KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175 176 177 178 179 180 181 182 183 184	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107	HC * * KK KM BA LS UD * KK KM KM KM KM KM RD * KK KK KK KK KK KK KK KK KK KK KK KK K	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170 171 172 173 174 175 176 177 176 177 179 180 181 182 183 184 185	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108	HC * * KK KM RD * KK KM HC * KK KM RD * KK KM RD * KK KM KM RD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81
155 156 157 158 160 161 162 164 165 164 165 166 167 168 167 170 171 172 173 174 175 176 177 178 176 177 178 180 181 182 183 184 185 186	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107	HC * KK KM RD * KK KM BA LS KK KM KM HC * KK KM KM RD KK KM RD LS LS LS UD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 169 170 171 172 173 174 175 176 177 176 177 179 180 181 182 183 184 185	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108	HC * * KK KM RD * KK KM HC * KK KM RD * KK KM RD * KK KM KM RD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81
155 156 157 158 160 161 162 164 165 164 165 166 167 168 167 170 171 172 173 174 175 176 177 178 176 177 178 180 181 182 183 184 185 186	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108	HC * KK KM RD * KK KM BA LS KK KM KM HC * KK KM KM RD KK KM RD LS LS LS UD	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 176 177 178 179 180 181 182 183 184 185 186 187 188	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD KK KM BA LS KK KM RD KK KM RD KK KM RD KK KM LS UD *	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59
155 156 157 158 160 161 162 164 165 166 167 168 167 170 171 172 173 174 175 176 177 178 176 177 178 180 181 182 183 184 185 186 187 188 188	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD * KK KM BA LS UD * KK KM KM HC * KK KM KM RD * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 188 187 188 189 190	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD * KK KM BA LS US KK KM KM KM KM RD * KK KM BA LS US US *	subbasins 020 and 025 3 R030 R030 R030 0.39 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 170 171 172 173 174 175 176 177 175 176 177 179 180 181 182 183 184 185 186 185 186 187 188 188 189 190 191	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD KK KM BA LS UD KK KM RD KK KM RD KK KM LS UD KK KM	subbasins 020 and 025 3 R030 R0ute combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 188 187 188 189 190	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD * KK KM BA LS US KK KM KM KM KM RD * KK KM BA LS US US *	subbasins 020 and 025 3 R030 R030 R030 0.39 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59
155 156 157 158 159 160 161 162 163 164 165 166 167 166 167 168 170 171 172 173 174 175 176 177 175 176 177 179 180 181 182 183 184 185 186 185 186 187 188 188 189 190 191	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD KK KM BA LS UD KK KM RD KK KM RD KK KM LS UD KK KM	subbasins 020 and 025 3 R030 R0ute combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035
155 156 157 158 157 161 162 163 164 165 166 167 168 167 168 167 168 167 170 171 172 173 174 175 177 178 179 180 181 182 183 184 182 183 184 185 186 187 182 183 184 185 186 187 182 183 184 182 183 184 184 185 186 182 183 184 182 183 184 182 183 184 182 183 184 182 199 190 191 191 192 193	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109	HC * KK KM RD * KK KM LS UD * KK KM HC * KK KM EA LS UD * KK KM EA LS UD * KK KM EA LS UD * KK KM EA LS	subbasins 020 and 025 3 R030 R0ute combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 170 177 175 176 177 178 179 180 181 182 183 184 185 186 185 188 188 185 188 188 189 190 191 192 193	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109 110 111 112 113	HC * KK KM RD KK KM BA LS UD KK KM RD KK KM RD KK KM RD KK KM KM LS UD K KK KM K	subbasins 020 and 025 3 R030 Rute combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2
155 156 157 158 159 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 185 186 187 188 188 189 190 191 192 193	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109 110 111 112 113	HC * KK KM RD * KK KM LS UD * KK KM HC * KK KM BA LS UD * KK KM BA LS UD * KK KM KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 R0406 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 184 185 184 185 184 185 186 187 190 191 192 193 194 195 196	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	HC * KK KM RD * KK KM BA LS UD * KK KM KM KM RD * KK KM BA LS UD * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 R046 combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road.
155 156 157 158 159 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 185 186 187 188 188 189 190 191 192 193	89 90 91 92 93 94 95 96 97 97 98 99 100 101 101 102 103 104 105 106 107 108 109 110 111 112 113	HC * KK KM RD * KK KM LS UD * KK KM HC * KK KM BA LS UD * KK KM BA LS UD * KK KM KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 R0406 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 184 185 184 185 184 185 186 187 190 191 192 193 194 195 196	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	HC * KK KM RD * KK KM BA LS UD * KK KM KM KM RD * KK KM BA LS UD * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-855 concrete box
155 156 157 158 159 161 162 163 164 165 166 167 168 167 168 167 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 185 188 188 189 190 191 192 193 194 195 196 197 198	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	HC * KK KM RD * KK KM BA LS UD * KK KM HC * KK KM BA LS UD * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box culverts. When the road overtops, the majority continues down Bailey
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 184 185 184 185 184 185 184 187 188 189 190 191 192 193 194 195 196 198 199	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	HC * KK KM RD * KK KM BA LS UD * KK KM KM KM RD * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box cuverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road.
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 170 177 173 174 175 176 177 175 176 177 178 181 182 183 184 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	HC * KK KM RD KK KM BA LS UD KK KM RD KK KM RD KK KM	subbasine 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4009 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road.
155 156 157 158 159 161 162 163 164 165 166 167 168 167 168 167 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200 201	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	HC * KK KM RD * KK KM BA LS UD * KK KM HC * KK KM BA LS UD * KK KM BA LS UD * KK KM KM KM KM KM KM KM KM KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Plow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road. The split was determined by modeling the culvert in HY-8 to get the capacity. Normal deth cross sections were used to determine the amount
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 170 177 173 174 175 176 177 175 176 177 178 181 182 183 184 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	HC * KK KM RD KK KM BA LS UD KK KM RD KK KM RD KK KM	subbasine 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4009 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 COmbine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road.
155 156 157 158 159 161 162 163 164 165 166 167 168 167 168 167 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200 201	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	HC * KK KM RD * KK KM BA LS UD * KK KM HC * KK KM BA LS UD * KK KM BA LS UD * KK KM KM KM KM KM KM KM KM KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Plow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road. The split was determined by modeling the culvert in HY-8 to get the capacity. Normal deth cross sections were used to determine the amount
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 177 178 179 180 181 182 183 184 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	HC * KK KM RD * KK KM LS UD * KK KM HC * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-&SC concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road. The split was determined by modeling the culvert in HY-8 to get the capacity. Normal depth cross sections were used to determine the amount of flow along Toll Road. All measurements were taken on site in Seytember 2011.
155 156 157 158 159 160 161 162 163 164 165 166 167 168 167 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	HC * KK KM RD * KK KM BA LS UD * KK KM HC * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff croses Toll Road in 2-RaS concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road. Bailey Canyon Creek. The remainder flows northeast along Toll Road.
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 177 178 179 180 181 182 183 184 185 186 187 183 184 185 186 187 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	HC * KK KM RD KK KM BA LS UD * KK KM KM KM KM BA LS LS LS LS LS LS KK KM	subbasine 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.597 81 0.597 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff crosses Toll Road in 2-8x5 concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road. The aplit was determined by modeling the culvert in MV-8 to get the capacity. Normal depth cross sections were used to determine the amount of flow along Toll Road. All measurements were taken on site in September 2011. D050 0 510 913 1580 2460 3514
155 156 157 158 159 160 161 162 163 164 165 166 167 168 167 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	HC * KK KM RD * KK KM BA LS UD * KK KM HC * KK KM BA LS UD * KK KM	subbasins 020 and 025 3 R030 Route combined hydrograph at CP025 to CP030 4069 0.039 0.100 TRAP 25 3 030 Runoff hydrograph for subbasin 030 1.74 76 1.02 CP030 Combine routed hydrograph from CP025 with runoff hydrograph from subbasin 030 2 R035 Route combined hydrograph at CP030 to CP035 3714 0.034 0.108 TRAP 70 4 035 Runoff hydrograph for subbasin 035 0.517 81 0.59 CP035 Combine routed hydrograph from CP030 with runoff hydrograph from subbasin 035 2 D040 Flow diversion at the intersection of Toll Road and Ravazza Road. Bailey Canyon Creek runoff croses Toll Road in 2-RaS concrete box culverts. When the road overtops, the majority continues down Bailey Canyon Creek. The remainder flows northeast along Toll Road. Bailey Canyon Creek. The remainder flows northeast along Toll Road.

Page	3	of	7
------	---	----	---

207		*			
208 1 209			HEC-1 INPUT	PAGE	4
210	LINE	ID	1		
211 212					
213 214	126 127	KK KM	R040 Route portion of the Bailey Canyon Creek runoff that crosses Toll		
215	128	KM	Road in culvert to CP040		
216 217	129	RD *	3539 0.029 0.073 TRAP 30 50		
218 219	130	KK	040		
220 221	131 132	KM	Runoff hydrograph for subbasin 040 0.821		
222	133	BA LS	82		
223 224	134	UD *	0.73		
225 226	135	KK	CP040		
227	136	KM	Combine routed hydrograph from CP035 with runoff hydrograph		
228 229	137 138	KM HC	from subbasin 040 2		
230 231		*			
232	139	KK	R045		
233 234	140 141	KM RD	Route combined hydrograph at CP040 to CP045 1734 0.023 0.086 TRAP 30 50		
235 236		*			
237 238	142 143	KK KM	045 Runoff hydrograph for subbasin 045		
239	144	BA	0.943		
240 241	145 146	LS UD	82 0.87		
242 243		*			
244	147	KK	CP045		
245 246	148 149	KM KM	Combine routed hydrograph from CP040 with runoff hydrograph from subbasin 045		
247 248	150	HC *	2		
249 250	151	KK	R050		
251	152	KM	Route combined hydrograph at CP045 to CP050		
252 253	153	RD *	5748 0.018 0.053 TRAP 20 2		
254 255	154	KK	050		
256	155	KM	Runoff hydrograph for subbasin 050		
257 258	156	BA	0.290 79		
200	157	LS	19		
259 260	157	LS UD *	0.52		
259 260 261 1		UD		PAGE	5
259 260 261 1 262 263		UD *	0.52	PAGE	5
259 260 261 1 262 263 264 265	158 LINE	UD * ID	0.52 HEC-1 INPUT 12345678910	PAGE	5
259 260 261 1 262 263 264	158	UD *	0.52 HEC-1 INPUT 12345678910 CP050	PAGE	5
259 260 261 1 262 263 264 265 266 265 266 267 268	158 LINE 159 160 161	UD * ID KK KM KM	0.52 HEC-1 INPUT 12345678910 CCP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050	PAGE	5
259 260 261 1 262 263 264 265 266 266 267 268 269 270	158 LINE 159 160	UD * ID KK KM	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272	158 LINE 159 160 161 162 163	UD * ID KK KM HC * KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271	158 LINE 159 160 161 162	UD * ID KK KM KM HC *	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2	PAGE	5
259 260 261 1 262 263 265 265 266 267 268 269 270 271 272 273 273 274 275	158 LINE 159 160 161 162 163 164	UD * ID KK KM HC * KK KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	158 LINE 159 160 161 162 163 164 165 166	UD * ID KK KM HC * KK KM DR * KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 275 276 277 278 279	158 LINE 159 160 161 162 163 164 165	UD * ID KK KM KM KK KK KM RD	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 273 273 274 275 276 277 278 279 280	158 LINE 159 160 161 162 163 164 165 166 167	UD * ID KK KM HC * KK KK KK KK KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 275 276 277 278 279 280 281 282	158 LINE 159 160 161 162 163 164 165 166 167 168 169	UD * ID KK KM HC * KK KM DR * KK KM RD * KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10	PAGE	5
259 260 261 1 262 263 265 266 267 268 269 270 271 272 273 274 275 276 277 278 277 278 279 280 281 282 283 284	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171	UD * ID KK KM HC * KK KM DR * KK KM RD * KK KK KM BA	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 277 278 279 280 281 283	158 LINE 159 160 161 162 163 164 165 166 167 168 168 169 170	UD * ID KK KM HC KK KM DR KK KM RD K KK KM	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055	PAGE	5
259 260 261 1 262 263 265 266 267 268 269 270 271 271 272 273 274 275 276 277 278 277 278 279 279 280 281 282 283 284 283 284 285 286	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172	UD * ID KK KM HC * KK KM RD K KK KM RD * KK KM BA LS	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 77	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 273 274 275 276 277 278 277 278 279 280 281 280 281 283 284 283 284 285 286 287 288 289	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	UD * ID KK KM HC KK KM DR KK KM RD K KK LS UD K KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055 R00te diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 77 0.61	PAGE	5
259 260 261 1 262 263 265 266 267 268 269 270 271 272 273 274 275 276 277 278 277 278 279 280 281 282 283 284 285 284 285 284 285 284 285 284 285 286 287 288 289 290 291	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	UD * ID KK KM HC * KK KM RD * KK KM RD * KK KM LS UD * KK KM KM	0.52 HEC-1 INPUT 12345678910 CP050 COmbine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 77 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road	PAGE	5
259 260 261 1 262 263 265 266 267 270 271 272 273 274 275 276 274 275 276 277 278 279 280 281 282 283 284 283 284 285 286 287 288 289 290	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	UD * ID KK KM KM HC * KK KM DR * KK KM RD * KK KM BA LS UD * KK KM	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 77 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph	PAGE	5
259 260 261 1 262 263 265 266 267 270 271 272 273 274 275 276 277 278 279 280 281 281 282 283 284 285 284 285 284 285 284 285 284 285 284 285 284 285 286 287 288 289 290 291 292 293 294	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	UD * ID KK KM HC * KK KM RD KK KM BA LS UD K KK KM HC *	0.52 HEC-1 INPUT 12345678910 CPD50 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Runoff hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 7 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road	PAGE	5
259 260 261 1 262 263 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 277 278 279 280 281 282 283 284 283 284 283 284 283 284 285 286 287 289 290 291 292 293 294 295 296	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	UD * ID KK KM HC * KK KM DR * KK KM RD * KK KM BA LS UD * KK KM KM HC * KK KM	<pre>0.52</pre>	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 277 278 277 278 277 278 277 278 277 278 277 278 280 281 282 283 284 285 286 285 286 287 288 289 290 291 292 293 294 295 296 297 298	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	UD * ID KK KM HC KK KM C KK KM BA LS UD K KK KM HC KK KM HC KK	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 77 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road 2 CP055	PAGE	5
259 260 261 1 262 263 265 266 267 270 271 272 273 274 275 276 276 277 278 279 280 281 282 283 284 285 286 287 284 285 286 287 288 289 290 291 292 291	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 177	UD * ID KK KM HC * KK KM DR * KK KM RD * KK KM BA LS UD * KK KM KM HC * KK KM KM HC ZZ	<pre>0.52</pre>	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 277 278 277 278 277 278 277 278 277 278 277 278 277 278 279 280 281 283 284 283 284 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 1 300 1 NPUT	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181	UD * ID KK KM HC * KK KM DR * KK KM RD * KK KM BA LS UD * KK KM KM HC * KK KM KM HC ZZ	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 7 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road 2 CP055 Combine hydrograph from CP050 with combined hydrograph at CP055 2 GRAM OF STREAM NETWORK	PAGE	5
259 260 261 1 262 263 264 265 266 267 270 271 272 273 274 275 276 277 278 277 278 277 278 277 278 279 280 281 282 283 284 285 286 287 288 284 285 286 287 280 281 282 283 284 285 286 290 291 292 291 292 293 294 295 296 297 298 299 1 300 301 INPUT 302 LINE	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 V) ROUTING	UD * ID KK KM HC * KK KM HC * KK KM RD * KK KM KM LS UD * KK KM HC ZZ CIC DIAG	<pre>0.52 HEC-1 INPUT12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 7 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road 2 CP055 Combine hydrograph from CP050 with combined hydrograph at CP055 Combine hydrograph from CP050 with combined hydrograph at CP055 2 GRAM OF STREAM NETWORK (>) DIVERSION OR FUMP FLOW</pre>	PAGE	5
259 260 261 1 262 263 265 266 267 270 271 272 273 274 275 276 277 278 279 280 281 283 284 283 284 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 295 296 297 298 299 1 300 301 INPUT 302 LINE 303 304 NO. 305	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 176 177 178 179 180 181 XCHEMAT (V) ROUTING (.) CONNECTO	UD * ID KK KM HC * KK KM HC * KK KM RD * KK KM KM LS UD * KK KM HC ZZ CIC DIAG	0.52 HEC-1 INPUT 12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 7 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road 2 CP055 Combine hydrograph from CP050 with combined hydrograph at CP055 2 GRAM OF STREAM NETWORK	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 277 278 277 278 277 278 279 280 281 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 285 226 287 283 284 289 290 291 292 293 294 295 296 297 295 296 297 298 299 1 300 201 INPUT 302 LINE 303 304 NO.	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 V) ROUTING	UD * ID KK KM HC * KK KM HC * KK KM RD * KK KM KM LS UD * KK KM HC ZZ CIC DIAG	<pre>0.52 HEC-1 INPUT12345678910 CP050 Combine routed hydrograph from CP045 with runoff hydrograph from subbasin 050 2 Toll Retrieve diverted runoff from CP035 that flows in Toll Road D055 R055 Route diverted hydrograph from CP035 in Toll Road to CP055 9490 0.026 0.045 TRAP 8 10 055 Runoff hydrograph for subbasin 055 0.542 7 0.61 CP055 Combine routed hydrograph from CP035 with runoff hydrograph from subbasin 055 on the west side of Toll Road 2 CP055 Combine hydrograph from CP050 with combined hydrograph at CP055 Combine hydrograph from CP050 with combined hydrograph at CP055 2 GRAM OF STREAM NETWORK (>) DIVERSION OR FUMP FLOW</pre>	PAGE	5
259 260 261 1 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 277 278 279 280 281 282 283 284 285 286 287 288 289 290 281 282 283 284 285 286 287 288 289 291 292 293 294 295 294 295 294 295 295 296 297 298 299 1 300 301 INPUT 302 LINE 303 304 NO. 305 47	158 LINE 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 176 177 178 179 180 181 XCHEMAT (V) ROUTING (.) CONNECTO	UD * ID KK KM HC * KK KM HC * KK KM RD * KK KM KM LS UD * KK KM HC ZZ CIC DIAG	<pre>D.52</pre>	PAGE	5

310 311		•	•	
312	58	CP010	•	
313		v		
314		v		
315	61	R015		
316		•		
317 318	64	•	015	
319	04			
320				
321	69	CP015		
322		V		
323	50	V		
324 325	73	R025		
326				
327	76		020	
328				
329	0.1		•	0.05
330 331	81	•	•	025
332				
333	86	CP025		
334		V		
335		V		
336 337	90	R030		
338				
339	93		030	
340				
341	0.0			
342 343	98	CP030	• • • • • • • • • •	
343 344		V V		
345	102	R035		
346				
347		•		
348 349	105	•	035	
349 350		•	•	
351	110	CP035		
352				
353				
354	123		> I	055
355 356	114	D040 V		
357		v		
358	126	R040		
359				
360				
361 362	130	•	040	
363				
364	135	CP040		
365		V		
366		V		
367 368	139	R045		
369				
370	142		045	
371				
372			•	
373 374	147	CP045 V	• • • • • • • • •	
375		v		
376	151	R050		
377				
378				
379 380	154		050	
380 381				
382	159	CP050	•	
383				
384				
385				D055
386 387	163		Toll V	
388			v	
389	166		R055	
390				
391	1.00			055
392 393	169	•		055
393 394		•	•	:
395	174		CP055.	
396		-		
207				
397	178	CP055	• • • • • • • • •	
398			יייג רוקייווסו	THIS LOCATION
398 399	(***) ואיזם	OFF ALGO COM	united with	THE ROCKTION
398 399 400	(***) RUN 1********	OFF ALSO CON **********	********	*******
398 399 400 401 402	1**********	* * * * * * * * * * * * *		*
398 399 400 401 402 403	1********* * * FLOOD	****************	PACKAGE	(HEC-1) *
398 399 400 401 402 403 404	1********* * * FLOOD	************* HYDROGRAPH JUN	PACKAGE 1998	(HEC-1) * *
398 399 400 401 402 403 404 405	1********* * * FLOOD *	****************	PACKAGE 1998	(HEC-1) *
398 399 400 401 402 403 404 405 406	1*************************************	************* HYDROGRAPH JUN VERSION	PACKAGE 1998 4.1	* (HEC-1) * * * *
398 399 400 401 402 403 404 405 406	1*************************************	HYDROGRAPH JUN VERSION TE 060CT11	PACKAGE 1998 4.1 L TIME 1	* (HEC-1) * * * 17:48:01 * *
398 399 400 401 402 403 404 405 406 407 408 409	1*************************************	************* HYDROGRAPH JUN VERSION	PACKAGE 1998 4.1 L TIME 1	* (HEC-1) * * * 17:48:01 * *
398 399 400 401 402 403 404 405 406 407 408 409 410	1*************************************	HYDROGRAPH JUN VERSION TE 060CT11	PACKAGE 1998 4.1 L TIME 1	* (HEC-1) * * * 17:48:01 * *
398 399 400 401 402 403 404 405 406 407 408 409	1*************************************	HYDROGRAPH JUN VERSION TE 060CT11	PACKAGE 1998 4.1 L TIME 1	* (HEC-1) * * * 17:48:01 * *

****	*****	**
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
* * * * *	*****	* *

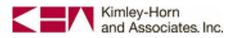
515

R015

2.98

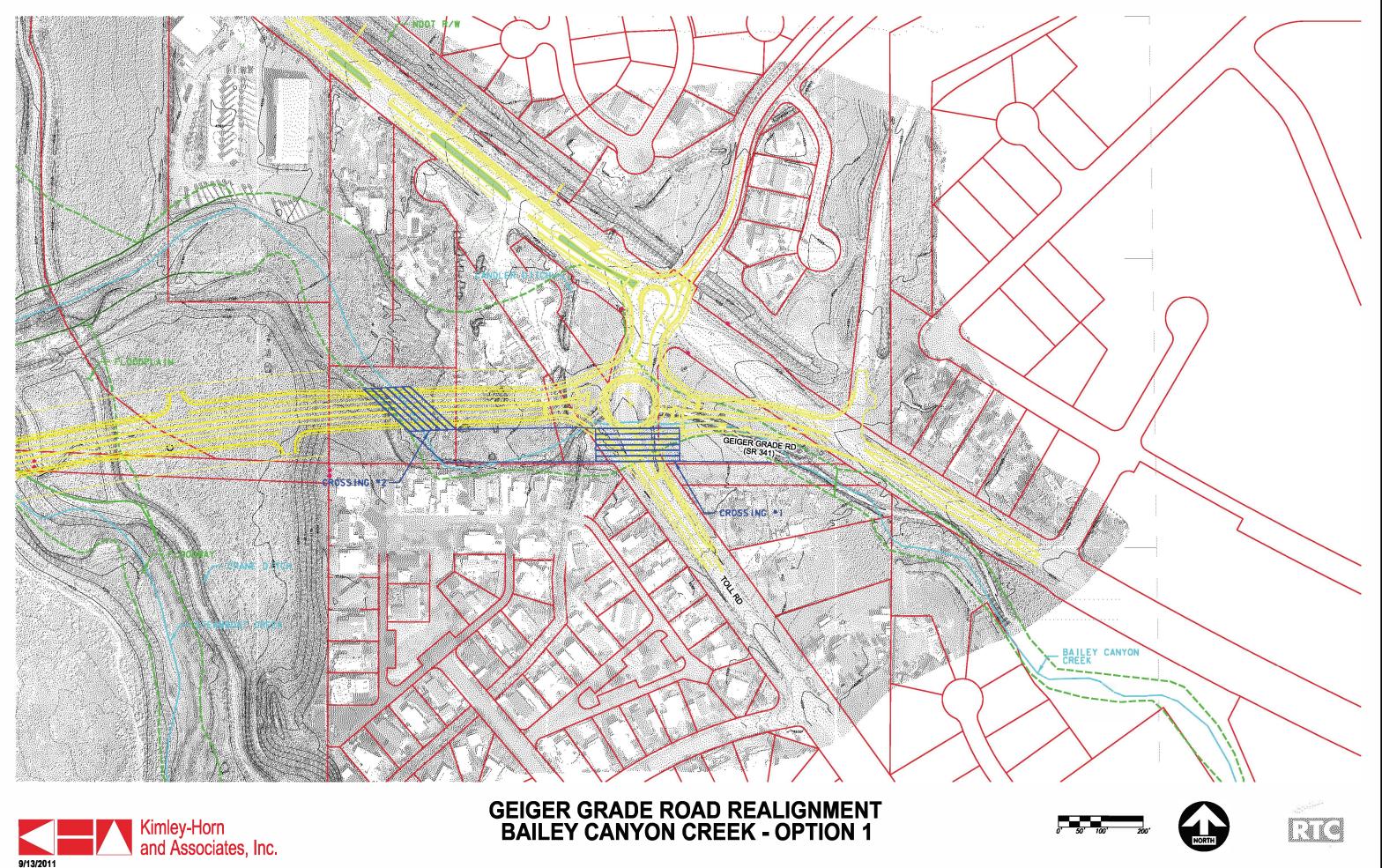
1 FLOW

622.


413 414 415 GEIGER GRADE ROAD REALIGNMENT 416 Model for Bailey Canyon Creek Watershed 417 Existing Conditions 418 Prepared for the Regional Transportation Commission 419 420 of Washoe County 421 422 Prepared by Kimley-Horn and Associates, Inc. KHA Project Number 092528005 September 2011 423 424 425 426 MODELING PARAMETERS 427 - 100 Year 24 Hour Storm Event 428 - NOAA Atlas 14 Rainfall Data 429 - SCS Unit Hydrograph 430 SCS Curve Number Method 431 - Muskingum-Cunge Routing Method 432 433 Topographic and land use data received from Washoe County September 2011 434 435 Diversion data obtained from capacity analysis of split flow using normal 436 depth 437 438 MODELING NOMENCLATURE SUBBASIN HYDROGRAPH: 439 - the most upstream subbasin 440 Example: 005 441 442 SUBBASIN DIVERSION: Example: D040 - flow is diverted northeast towards combination point CP Example: D055 - flow is diverted northwest towards combination point CP 443 444 445 446 ROUTE HYDROGRAPH: 447 Example: RCP030 - flow is routed towards CP030 448 449 COMBINE HYDROGRAPH: 450 Example: CP035 - combine flow at concentration point 035 451 452 453 454 PREFIXES FOR MODELING OPERATIONS D Divert flow 455 R Routing flow 456 CP Combination point 457 ********** 458 45 IO OUTPUT CONTROL VARIABLES 459 460 IPRNT 5 PRINT CONTROL 461 TPLOT 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 462 OSCAL 463 464 IT HYDROGRAPH TIME DATA 5 MINUTES IN COMPUTATION INTERVAL 465 NMIN 466 IDATE 0 STARTING DATE 1 0000 467 ITIME STARTING TIME 468 400 NUMBER OF HYDROGRAPH ORDINATES NO 469 NDDATE 2 ENDING DATE 0 470 0915 NDTIME ENDING TIME 471 ICENT 19 CENTURY MARK 472 COMPUTATION INTERVAL 473 .08 HOURS 474 TOTAL TIME BASE 33.25 HOURS 475 ENGLISH UNITS 476 477 DRAINAGE AREA SQUARE MILES 478 PRECIPITATION DEPTH INCHES 479 LENGTH, ELEVATION FEET 480 FLOW CUBIC FEET PER SECOND STORAGE VOLUME 481 ACRE-FEET 482 SURFACE AREA ACRES 483 TEMPERATURE DEGREES FAHRENHEIT 484 485 JP MULTI-PLAN OPTION 486 NPLAN 1 NUMBER OF PLANS 487 488 MULTI-RATIO OPTION JR 489 RATIOS OF PRECIPITATION 490 .98 491 1 492 493 PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS 494 FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS 495 496 497 498 RATIOS APPLIED TO PRECIPITATION 499 OPERATION STATION AREA PLAN RATIO 1 500 .98 501 502 HYDROGRAPH AT 503 + 005 1.67 1 FLOW 428. 504 13.58 TIME 505 HYDROGRAPH AT 506 507 + 010 1.31 1 FLOW 195 508 TIME 13.58 509 510 2 COMBINED AT 511 + CP010 2.98 1 FLOW 623. 512 TIME 13.58 513 514 ROUTED TO

516					TIME	13.75
517 518 519 520	HYDROGRAPH AT +	015	3.00	1	FLOW TIME	568. 13.33
521					TIME	13.33
522 523 524 525	2 COMBINED AT +	CP015	5.98	1	FLOW TIME	1161. 13.50
525 526 527 528 529	ROUTED TO +	R025	5.98	1	FLOW TIME	1162. 13.75
	HYDROGRAPH AT +	020	1.18	1	FLOW TIME	220. 13.42
534 535 536 537	HYDROGRAPH AT +	025	3.38	1	FLOW TIME	499. 13.75
538 539 540 541	3 COMBINED AT +	CP025	10.54	1	FLOW TIME	1861. 13.75
542 543 544 545	ROUTED TO +	R030	10.54	1	FLOW TIME	1862. 13.83
	HYDROGRAPH AT +	030	1.74	1	FLOW TIME	504. 13.08
550 551 552 553		CP030	12.28	1	FLOW TIME	2186. 13.67
	ROUTED TO +	R035	12.28	1	FLOW TIME	2185. 13.75
558 559 560 561	HYDROGRAPH AT +	035	.52	1	FLOW TIME	280. 12.67
562 563 564 565		CP035	12.80	1	FLOW TIME	2238. 13.75
566 567 568 569	DIVERSION TO +	D055	12.80	1	FLOW TIME	320. 13.75
570 571 572 573	HYDROGRAPH AT +	D040	12.80	1	FLOW TIME	1918. 13.75
574 575 576 577	ROUTED TO +	R040	12.80	1	FLOW TIME	1918. 13.92
578 579 580 581		040	.82		FLOW TIME	
583 584 585		CP040	13.62	1	FLOW TIME	2017. 13.92
587 588 589		R045	13.62		FLOW TIME	
591 592 593		045	.94	1	FLOW TIME	402. 12.92
595 596 597		CP045	14.56		FLOW TIME	
599 600 601		R050	14.56		FLOW TIME	
603 604 605		050	.29	1	FLOW TIME	158. 12.58
607 608 609		CP050	14.85		FLOW TIME	
611 612 613		Toll	.00		FLOW TIME	
614 615 616 617		R055	.00	1	FLOW TIME	321. 14.08

617 618 HYDROGRAPH AT


Pri	nted at 08:00 o	on 07 Oct	2011								
619 620	+	055	.54	1 FLOW TIME	242. 12.67						
621				11111	12.07						
	2 COMBINED AT										
623	+	CP055	.54	1 FLOW	362.						
624 625				TIME	14.08						
	2 COMBINED AT										
627	+	CP055 15	5.39	1 FLOW	2541.						
628 629	1			TIME	14.08						
630	T			SUMMA	RY OF KINEMAT	TC WAVE -	MUSKINGU	M-CUNGE ROU	TING		
631					FLOW IS DIREC						
632									LATED TO		
633								COMPUTATIO			
634 635	ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	PEAK	TIME TO PEAK	VOLUME	
636					1 BAIC				1 DAIC		
637			(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)	
638											
639 640		I = 1 RATIO= MANE	= .00 5.00	622.42	825.00	1.65	5.00	622.42	825.00	1.65	
641	1015	, mainte	5.00	022.12	025.00	1.05	5.00	022.12	025.00	1.05	
642											
	CONTINUITY SUMMARY	(AC-FT) - 1	INFLOW=	.2622E+03	EXCESS= .0000	E+00 OUTFL	OW= .262	2E+03 BASIN	STORAGE=	.1277E-01 PERCENT ERROR=	.0
644 645											
646	FOR PLAN	I = 1 RATIO=	= .00								
647		MANE		1162.23	825.00	1.50	5.00	1162.23	825.00	1.50	
648											
649	CONTENTITEV CUMMADA		INFI OW-	47700.02	EVGERE- 0000		014- 477	10,02 01011	CTODACE-	.2829E-01 PERCENT ERROR=	.0
651	CONTINUITI SUMMARI	(AC-F1) - 1	LINF LOW-	.4//06+03	EACE350000	E+00 OOIFL	OW4//	ILTUS BASIN	SIORAGE-	.2029E-UI PERCENI ERROR-	.0
652											
653		I = 1 RATIO=									
654 655	R030) MANE	5.00	1862.12	830.00	1.41	5.00	1862.12	830.00	1.41	
656											
	CONTINUITY SUMMARY	(AC-FT) - 1	INFLOW=	.7923E+03	EXCESS= .0000	E+00 OUTFL	OW= .792	4E+03 BASIN	STORAGE=	.1613E-01 PERCENT ERROR=	.0
658											
659 660		I = 1 RATIO=	- 00								
661		MANE	5.00	2185.06	825.00	1.45	5.00	2185.06	825.00	1.45	
662											
663		(10 55)		04005.00				00.00 00000	00000000	47045 01 555 6517 555 65	0
664 665	CONTINUITY SUMMARY	(AC-FT) - 1	INF.LOW=	.9488E+03	EXCESS= .0000	E+00 00.1.F.L	OW= .948	8E+03 BASIN	STORAGE=	.4794E-01 PERCENT ERROR=	.0
666											
667		I = 1 RATIO=									
668 669	R040) MANE	5.00	1917.82	835.00	1.40	5.00	1917.82	835.00	1.40	
670											
	CONTINUITY SUMMARY	(AC-FT) - 1	INFLOW=	.9575E+03	EXCESS= .0000	E+00 OUTFL	OW= .957	5E+03 BASIN	STORAGE=	.4143E-01 PERCENT ERROR=	.0
672											
673 674	FOR PLAN	I = 1 RATIO=	= 00								
675		MANE	5.00	2018.86	840.00	1.45	5.00	2018.86	840.00	1.45	
676											
677	CONTENTITE CUMMADA		INTEL OW-	10520.04	EVGECC- 0000	ELOO OUTET	OW- 10E	DELOA DACIN	CTODACE-	.4020E-01 PERCENT ERROR=	.0
679	CONTINUITI SUMMARI	(AC-F1) - 1	LINF LOW-	.10526+04	EACE350000	E+00 OOIFL	OW105	ZETU4 BASIN	SIORAGE-	.4020E-01 PERCENI ERROR-	.0
680											
681		I = 1 RATIO=									
682 683	R050) MANE	5.00	2156.92	845.00	1.49	5.00	2156.92	845.00	1.49	
684											
	CONTINUITY SUMMARY	(AC-FT) - 1	INFLOW=	.1160E+04	EXCESS= .0000	E+00 OUTFL	OW= .116	0E+04 BASIN	STORAGE=	.1268E+00 PERCENT ERROR=	.0
686											
687 688	FOR DIAN	I = 1 RATIO=	- 00								
689		MANE	4.00	321.08	844.00	-1.00	5.00	320.75	845.00	-1.00	
690											
691											
692											
693 694											
695											
696	*** NORMAL END OF	HEC-1 ***									
697											
698 699											

Page 7 of 7

ATTACHMENT 10: GEIGER GRADE ROAD REALIGNMENT EXHIBIT

Modernize hydrologic prediction processes by creating custom statewide SSURGO Green and Ampt parameter database

Appendix B. HEC-HMS Model Support Data

Folders

GIS_Data

Sc	vils
	soilmu_a_nv628.shp
	soilmu_a_nv772.shp
W	atersheds
	Subbasins.shp
	KHA_Data
	Miscellaneous shapefiles from Original Hydrologic Study
HECHMS_	Data
Cu	IrveNumber – HEC-HMS model converted from Original Hydrologic Study
G	A_ThreeInch – HEC-HMS Green and Ampt hydrologic model
SupportFi	les
Ba	ileyCanyonHMSFlowComparisons.xlsx – Excel file used for results comparison
G	A_Detail.csv – Green and Ampt values averaged for HEC-HMS model per subbasin
G	A_Summary.csv - Green and Ampt values per subbasin extracted from soils/basin data

Soil data files available upon request

Contact NDOT Research at (775) 888-7000 <u>info@dot.nv.gov</u> and request

"Research Project 674-19-803 Soil Data"

Nevada Department of Transportation Kristina L. Swallow, P.E. Director Ken Chambers, Research Division Chief (775) 888-7220 kchambers@dot.nv.gov 1263 South Stewart Street Carson City, Nevada 89712